Spaces:
Sleeping
Sleeping
Update db.py
Browse files
db.py
CHANGED
@@ -1,27 +1,28 @@
|
|
1 |
-
|
2 |
-
from langchain_community.
|
3 |
-
from langchain_community.
|
4 |
-
from
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
1 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
2 |
+
from langchain_community.vectorstores import FAISS
|
3 |
+
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import os
|
7 |
+
import logging
|
8 |
+
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
def load_embeddings():
|
16 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
17 |
+
|
18 |
+
def load_vector_database(embeddings):
|
19 |
+
try:
|
20 |
+
db = FAISS.load_local("vectorstore/db_faiss", embeddings, allow_dangerous_deserialization=True)
|
21 |
+
logger.info("Vector database loaded successfully!")
|
22 |
+
return db
|
23 |
+
except Exception as e:
|
24 |
+
logger.error(f"Failed to load vector database: {e}")
|
25 |
+
raise e
|
26 |
+
|
27 |
+
embeddings = load_embeddings()
|
28 |
+
vector_db = load_vector_database(embeddings)
|