|
|
|
|
|
|
|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
|
|
|
|
import pathlib |
|
plt = platform.system() |
|
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath |
|
|
|
|
|
|
|
|
|
learn = load_learner('export.pkl') |
|
|
|
|
|
|
|
|
|
|
|
labels = learn.dls.vocab |
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
|
|
title = "Pet Breed Classifier" |
|
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." |
|
|
|
gr.Interface(fn=predict, |
|
inputs=gr.inputs.Image(shape=(512, 512)), |
|
title = "?ืชืคืื ืื ืขืืื ืื", |
|
description = "A fruite classifier trained on images from the internet with fastai. Created as a demo for Gradio and HuggingFace Spaces.", |
|
interpretation='default', |
|
outputs=gr.outputs.Label(num_top_classes=3)).launch(share=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|