import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load model and tokenizer model_name = "deepseek-ai/DeepSeek-V3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) # Function to handle chatbot response def chat_with_deepseek(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( inputs["input_ids"], max_length=512, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Gradio interface with gr.Blocks() as demo: gr.Markdown("# DeepSeek Chatbot") with gr.Row(): with gr.Column(): user_input = gr.Textbox(label="Enter your message", placeholder="Type something...") with gr.Column(): submit_btn = gr.Button("Send") chatbot_output = gr.Textbox(label="Response", placeholder="Chatbot response will appear here") submit_btn.click(chat_with_deepseek, inputs=user_input, outputs=chatbot_output) demo.launch()