File size: 34,242 Bytes
a4d7b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
import json
import math
from itertools import groupby
from typing import Callable, Dict, List, Optional, Set, Tuple, Type, Union

import numpy as np
import PIL
import torch
import torch.nn as nn
import torch.nn.functional as F

try:
    from safetensors.torch import safe_open
    from safetensors.torch import save_file as safe_save

    safetensors_available = True
except ImportError:
    from .safe_open import safe_open

    def safe_save(
        tensors: Dict[str, torch.Tensor],
        filename: str,
        metadata: Optional[Dict[str, str]] = None,
    ) -> None:
        raise EnvironmentError(
            "Saving safetensors requires the safetensors library. Please install with pip or similar."
        )

    safetensors_available = False


class LoraInjectedLinear(nn.Module):
    def __init__(
        self, in_features, out_features, bias=False, r=4, dropout_p=0.1, scale=1.0
    ):
        super().__init__()

        if r > min(in_features, out_features):
            raise ValueError(
                f"LoRA rank {r} must be less or equal than {min(in_features, out_features)}"
            )
        self.r = r
        self.linear = nn.Linear(in_features, out_features, bias)
        self.lora_down = nn.Linear(in_features, r, bias=False)
        self.dropout = nn.Dropout(dropout_p)
        self.lora_up = nn.Linear(r, out_features, bias=False)
        self.scale = scale
        self.selector = nn.Identity()

        nn.init.normal_(self.lora_down.weight, std=1 / r)
        nn.init.zeros_(self.lora_up.weight)

    def forward(self, input):
        return (
            self.linear(input)
            + self.dropout(self.lora_up(self.selector(self.lora_down(input))))
            * self.scale
        )

    def realize_as_lora(self):
        return self.lora_up.weight.data * self.scale, self.lora_down.weight.data

    def set_selector_from_diag(self, diag: torch.Tensor):
        # diag is a 1D tensor of size (r,)
        assert diag.shape == (self.r,)
        self.selector = nn.Linear(self.r, self.r, bias=False)
        self.selector.weight.data = torch.diag(diag)
        self.selector.weight.data = self.selector.weight.data.to(
            self.lora_up.weight.device
        ).to(self.lora_up.weight.dtype)


class LoraInjectedConv2d(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups: int = 1,
        bias: bool = True,
        r: int = 4,
        dropout_p: float = 0.1,
        scale: float = 1.0,
    ):
        super().__init__()
        if r > min(in_channels, out_channels):
            raise ValueError(
                f"LoRA rank {r} must be less or equal than {min(in_channels, out_channels)}"
            )
        self.r = r
        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )

        self.lora_down = nn.Conv2d(
            in_channels=in_channels,
            out_channels=r,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=False,
        )
        self.dropout = nn.Dropout(dropout_p)
        self.lora_up = nn.Conv2d(
            in_channels=r,
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=False,
        )
        self.selector = nn.Identity()
        self.scale = scale

        nn.init.normal_(self.lora_down.weight, std=1 / r)
        nn.init.zeros_(self.lora_up.weight)

    def forward(self, input):
        return (
            self.conv(input)
            + self.dropout(self.lora_up(self.selector(self.lora_down(input))))
            * self.scale
        )

    def realize_as_lora(self):
        return self.lora_up.weight.data * self.scale, self.lora_down.weight.data

    def set_selector_from_diag(self, diag: torch.Tensor):
        # diag is a 1D tensor of size (r,)
        assert diag.shape == (self.r,)
        self.selector = nn.Conv2d(
            in_channels=self.r,
            out_channels=self.r,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=False,
        )
        self.selector.weight.data = torch.diag(diag)

        # same device + dtype as lora_up
        self.selector.weight.data = self.selector.weight.data.to(
            self.lora_up.weight.device
        ).to(self.lora_up.weight.dtype)


UNET_DEFAULT_TARGET_REPLACE = {"CrossAttention", "Attention", "GEGLU"}

UNET_EXTENDED_TARGET_REPLACE = {"ResnetBlock2D", "CrossAttention", "Attention", "GEGLU"}

TEXT_ENCODER_DEFAULT_TARGET_REPLACE = {"CLIPAttention"}

TEXT_ENCODER_EXTENDED_TARGET_REPLACE = {"CLIPAttention"}

DEFAULT_TARGET_REPLACE = UNET_DEFAULT_TARGET_REPLACE

EMBED_FLAG = "<embed>"


def _find_children(
    model,
    search_class: List[Type[nn.Module]] = [nn.Linear],
):
    """
    Find all modules of a certain class (or union of classes).

    Returns all matching modules, along with the parent of those moduless and the
    names they are referenced by.
    """
    # For each target find every linear_class module that isn't a child of a LoraInjectedLinear
    for parent in model.modules():
        for name, module in parent.named_children():
            if any([isinstance(module, _class) for _class in search_class]):
                yield parent, name, module


def _find_modules_v2(
    model,
    ancestor_class: Optional[Set[str]] = None,
    search_class: List[Type[nn.Module]] = [nn.Linear],
    exclude_children_of: Optional[List[Type[nn.Module]]] = [
        LoraInjectedLinear,
        LoraInjectedConv2d,
    ],
):
    """
    Find all modules of a certain class (or union of classes) that are direct or
    indirect descendants of other modules of a certain class (or union of classes).

    Returns all matching modules, along with the parent of those moduless and the
    names they are referenced by.
    """

    # Get the targets we should replace all linears under
    if ancestor_class is not None:
        ancestors = (
            module
            for module in model.modules()
            if module.__class__.__name__ in ancestor_class
        )
    else:
        # this, incase you want to naively iterate over all modules.
        ancestors = [module for module in model.modules()]

    # For each target find every linear_class module that isn't a child of a LoraInjectedLinear
    for ancestor in ancestors:
        for fullname, module in ancestor.named_modules():
            if any([isinstance(module, _class) for _class in search_class]):
                # Find the direct parent if this is a descendant, not a child, of target
                *path, name = fullname.split(".")
                parent = ancestor
                while path:
                    parent = parent.get_submodule(path.pop(0))
                # Skip this linear if it's a child of a LoraInjectedLinear
                if exclude_children_of and any(
                    [isinstance(parent, _class) for _class in exclude_children_of]
                ):
                    continue
                # Otherwise, yield it
                yield parent, name, module


def _find_modules_old(
    model,
    ancestor_class: Set[str] = DEFAULT_TARGET_REPLACE,
    search_class: List[Type[nn.Module]] = [nn.Linear],
    exclude_children_of: Optional[List[Type[nn.Module]]] = [LoraInjectedLinear],
):
    ret = []
    for _module in model.modules():
        if _module.__class__.__name__ in ancestor_class:

            for name, _child_module in _module.named_modules():
                if _child_module.__class__ in search_class:
                    ret.append((_module, name, _child_module))
    print(ret)
    return ret


_find_modules = _find_modules_v2


def inject_trainable_lora(
    model: nn.Module,
    target_replace_module: Set[str] = DEFAULT_TARGET_REPLACE,
    r: int = 4,
    loras=None,  # path to lora .pt
    verbose: bool = False,
    dropout_p: float = 0.0,
    scale: float = 1.0,
):
    """
    inject lora into model, and returns lora parameter groups.
    """

    require_grad_params = []
    names = []

    if loras != None:
        loras = torch.load(loras)

    for _module, name, _child_module in _find_modules(
        model, target_replace_module, search_class=[nn.Linear]
    ):
        weight = _child_module.weight
        bias = _child_module.bias
        if verbose:
            print("LoRA Injection : injecting lora into ", name)
            print("LoRA Injection : weight shape", weight.shape)
        _tmp = LoraInjectedLinear(
            _child_module.in_features,
            _child_module.out_features,
            _child_module.bias is not None,
            r=r,
            dropout_p=dropout_p,
            scale=scale,
        )
        _tmp.linear.weight = weight
        if bias is not None:
            _tmp.linear.bias = bias

        # switch the module
        _tmp.to(_child_module.weight.device).to(_child_module.weight.dtype)
        _module._modules[name] = _tmp

        require_grad_params.append(_module._modules[name].lora_up.parameters())
        require_grad_params.append(_module._modules[name].lora_down.parameters())

        if loras != None:
            _module._modules[name].lora_up.weight = loras.pop(0)
            _module._modules[name].lora_down.weight = loras.pop(0)

        _module._modules[name].lora_up.weight.requires_grad = True
        _module._modules[name].lora_down.weight.requires_grad = True
        names.append(name)

    return require_grad_params, names


def inject_trainable_lora_extended(
    model: nn.Module,
    target_replace_module: Set[str] = UNET_EXTENDED_TARGET_REPLACE,
    r: int = 4,
    loras=None,  # path to lora .pt
):
    """
    inject lora into model, and returns lora parameter groups.
    """

    require_grad_params = []
    names = []

    if loras != None:
        loras = torch.load(loras)

    for _module, name, _child_module in _find_modules(
        model, target_replace_module, search_class=[nn.Linear, nn.Conv2d]
    ):
        if _child_module.__class__ == nn.Linear:
            weight = _child_module.weight
            bias = _child_module.bias
            _tmp = LoraInjectedLinear(
                _child_module.in_features,
                _child_module.out_features,
                _child_module.bias is not None,
                r=r,
            )
            _tmp.linear.weight = weight
            if bias is not None:
                _tmp.linear.bias = bias
        elif _child_module.__class__ == nn.Conv2d:
            weight = _child_module.weight
            bias = _child_module.bias
            _tmp = LoraInjectedConv2d(
                _child_module.in_channels,
                _child_module.out_channels,
                _child_module.kernel_size,
                _child_module.stride,
                _child_module.padding,
                _child_module.dilation,
                _child_module.groups,
                _child_module.bias is not None,
                r=r,
            )

            _tmp.conv.weight = weight
            if bias is not None:
                _tmp.conv.bias = bias

        # switch the module
        _tmp.to(_child_module.weight.device).to(_child_module.weight.dtype)
        if bias is not None:
            _tmp.to(_child_module.bias.device).to(_child_module.bias.dtype)

        _module._modules[name] = _tmp

        require_grad_params.append(_module._modules[name].lora_up.parameters())
        require_grad_params.append(_module._modules[name].lora_down.parameters())

        if loras != None:
            _module._modules[name].lora_up.weight = loras.pop(0)
            _module._modules[name].lora_down.weight = loras.pop(0)

        _module._modules[name].lora_up.weight.requires_grad = True
        _module._modules[name].lora_down.weight.requires_grad = True
        names.append(name)

    return require_grad_params, names


def extract_lora_ups_down(model, target_replace_module=DEFAULT_TARGET_REPLACE):

    loras = []

    for _m, _n, _child_module in _find_modules(
        model,
        target_replace_module,
        search_class=[LoraInjectedLinear, LoraInjectedConv2d],
    ):
        loras.append((_child_module.lora_up, _child_module.lora_down))

    if len(loras) == 0:
        raise ValueError("No lora injected.")

    return loras


def extract_lora_as_tensor(
    model, target_replace_module=DEFAULT_TARGET_REPLACE, as_fp16=True
):

    loras = []

    for _m, _n, _child_module in _find_modules(
        model,
        target_replace_module,
        search_class=[LoraInjectedLinear, LoraInjectedConv2d],
    ):
        up, down = _child_module.realize_as_lora()
        if as_fp16:
            up = up.to(torch.float16)
            down = down.to(torch.float16)

        loras.append((up, down))

    if len(loras) == 0:
        raise ValueError("No lora injected.")

    return loras


def save_lora_weight(
    model,
    path="./lora.pt",
    target_replace_module=DEFAULT_TARGET_REPLACE,
):
    weights = []
    for _up, _down in extract_lora_ups_down(
        model, target_replace_module=target_replace_module
    ):
        weights.append(_up.weight.to("cpu").to(torch.float16))
        weights.append(_down.weight.to("cpu").to(torch.float16))

    torch.save(weights, path)


def save_lora_as_json(model, path="./lora.json"):
    weights = []
    for _up, _down in extract_lora_ups_down(model):
        weights.append(_up.weight.detach().cpu().numpy().tolist())
        weights.append(_down.weight.detach().cpu().numpy().tolist())

    import json

    with open(path, "w") as f:
        json.dump(weights, f)


def save_safeloras_with_embeds(
    modelmap: Dict[str, Tuple[nn.Module, Set[str]]] = {},
    embeds: Dict[str, torch.Tensor] = {},
    outpath="./lora.safetensors",
):
    """
    Saves the Lora from multiple modules in a single safetensor file.

    modelmap is a dictionary of {
        "module name": (module, target_replace_module)
    }
    """
    weights = {}
    metadata = {}

    for name, (model, target_replace_module) in modelmap.items():
        metadata[name] = json.dumps(list(target_replace_module))

        for i, (_up, _down) in enumerate(
            extract_lora_as_tensor(model, target_replace_module)
        ):
            rank = _down.shape[0]

            metadata[f"{name}:{i}:rank"] = str(rank)
            weights[f"{name}:{i}:up"] = _up
            weights[f"{name}:{i}:down"] = _down

    for token, tensor in embeds.items():
        metadata[token] = EMBED_FLAG
        weights[token] = tensor

    print(f"Saving weights to {outpath}")
    safe_save(weights, outpath, metadata)


def save_safeloras(
    modelmap: Dict[str, Tuple[nn.Module, Set[str]]] = {},
    outpath="./lora.safetensors",
):
    return save_safeloras_with_embeds(modelmap=modelmap, outpath=outpath)


def convert_loras_to_safeloras_with_embeds(
    modelmap: Dict[str, Tuple[str, Set[str], int]] = {},
    embeds: Dict[str, torch.Tensor] = {},
    outpath="./lora.safetensors",
):
    """
    Converts the Lora from multiple pytorch .pt files into a single safetensor file.

    modelmap is a dictionary of {
        "module name": (pytorch_model_path, target_replace_module, rank)
    }
    """

    weights = {}
    metadata = {}

    for name, (path, target_replace_module, r) in modelmap.items():
        metadata[name] = json.dumps(list(target_replace_module))

        lora = torch.load(path)
        for i, weight in enumerate(lora):
            is_up = i % 2 == 0
            i = i // 2

            if is_up:
                metadata[f"{name}:{i}:rank"] = str(r)
                weights[f"{name}:{i}:up"] = weight
            else:
                weights[f"{name}:{i}:down"] = weight

    for token, tensor in embeds.items():
        metadata[token] = EMBED_FLAG
        weights[token] = tensor

    print(f"Saving weights to {outpath}")
    safe_save(weights, outpath, metadata)


def convert_loras_to_safeloras(
    modelmap: Dict[str, Tuple[str, Set[str], int]] = {},
    outpath="./lora.safetensors",
):
    convert_loras_to_safeloras_with_embeds(modelmap=modelmap, outpath=outpath)


def parse_safeloras(
    safeloras,
) -> Dict[str, Tuple[List[nn.parameter.Parameter], List[int], List[str]]]:
    """
    Converts a loaded safetensor file that contains a set of module Loras
    into Parameters and other information

    Output is a dictionary of {
        "module name": (
            [list of weights],
            [list of ranks],
            target_replacement_modules
        )
    }
    """
    loras = {}
    metadata = safeloras.metadata()

    get_name = lambda k: k.split(":")[0]

    keys = list(safeloras.keys())
    keys.sort(key=get_name)

    for name, module_keys in groupby(keys, get_name):
        info = metadata.get(name)

        if not info:
            raise ValueError(
                f"Tensor {name} has no metadata - is this a Lora safetensor?"
            )

        # Skip Textual Inversion embeds
        if info == EMBED_FLAG:
            continue

        # Handle Loras
        # Extract the targets
        target = json.loads(info)

        # Build the result lists - Python needs us to preallocate lists to insert into them
        module_keys = list(module_keys)
        ranks = [4] * (len(module_keys) // 2)
        weights = [None] * len(module_keys)

        for key in module_keys:
            # Split the model name and index out of the key
            _, idx, direction = key.split(":")
            idx = int(idx)

            # Add the rank
            ranks[idx] = int(metadata[f"{name}:{idx}:rank"])

            # Insert the weight into the list
            idx = idx * 2 + (1 if direction == "down" else 0)
            weights[idx] = nn.parameter.Parameter(safeloras.get_tensor(key))

        loras[name] = (weights, ranks, target)

    return loras


def parse_safeloras_embeds(
    safeloras,
) -> Dict[str, torch.Tensor]:
    """
    Converts a loaded safetensor file that contains Textual Inversion embeds into
    a dictionary of embed_token: Tensor
    """
    embeds = {}
    metadata = safeloras.metadata()

    for key in safeloras.keys():
        # Only handle Textual Inversion embeds
        meta = metadata.get(key)
        if not meta or meta != EMBED_FLAG:
            continue

        embeds[key] = safeloras.get_tensor(key)

    return embeds


def load_safeloras(path, device="cpu"):
    safeloras = safe_open(path, framework="pt", device=device)
    return parse_safeloras(safeloras)


def load_safeloras_embeds(path, device="cpu"):
    safeloras = safe_open(path, framework="pt", device=device)
    return parse_safeloras_embeds(safeloras)


def load_safeloras_both(path, device="cpu"):
    safeloras = safe_open(path, framework="pt", device=device)
    return parse_safeloras(safeloras), parse_safeloras_embeds(safeloras)


def collapse_lora(model, alpha=1.0):

    for _module, name, _child_module in _find_modules(
        model,
        UNET_EXTENDED_TARGET_REPLACE | TEXT_ENCODER_EXTENDED_TARGET_REPLACE,
        search_class=[LoraInjectedLinear, LoraInjectedConv2d],
    ):

        if isinstance(_child_module, LoraInjectedLinear):
            print("Collapsing Lin Lora in", name)

            _child_module.linear.weight = nn.Parameter(
                _child_module.linear.weight.data
                + alpha
                * (
                    _child_module.lora_up.weight.data
                    @ _child_module.lora_down.weight.data
                )
                .type(_child_module.linear.weight.dtype)
                .to(_child_module.linear.weight.device)
            )

        else:
            print("Collapsing Conv Lora in", name)
            _child_module.conv.weight = nn.Parameter(
                _child_module.conv.weight.data
                + alpha
                * (
                    _child_module.lora_up.weight.data.flatten(start_dim=1)
                    @ _child_module.lora_down.weight.data.flatten(start_dim=1)
                )
                .reshape(_child_module.conv.weight.data.shape)
                .type(_child_module.conv.weight.dtype)
                .to(_child_module.conv.weight.device)
            )


def monkeypatch_or_replace_lora(
    model,
    loras,
    target_replace_module=DEFAULT_TARGET_REPLACE,
    r: Union[int, List[int]] = 4,
):
    for _module, name, _child_module in _find_modules(
        model, target_replace_module, search_class=[nn.Linear, LoraInjectedLinear]
    ):
        _source = (
            _child_module.linear
            if isinstance(_child_module, LoraInjectedLinear)
            else _child_module
        )

        weight = _source.weight
        bias = _source.bias
        _tmp = LoraInjectedLinear(
            _source.in_features,
            _source.out_features,
            _source.bias is not None,
            r=r.pop(0) if isinstance(r, list) else r,
        )
        _tmp.linear.weight = weight

        if bias is not None:
            _tmp.linear.bias = bias

        # switch the module
        _module._modules[name] = _tmp

        up_weight = loras.pop(0)
        down_weight = loras.pop(0)

        _module._modules[name].lora_up.weight = nn.Parameter(
            up_weight.type(weight.dtype)
        )
        _module._modules[name].lora_down.weight = nn.Parameter(
            down_weight.type(weight.dtype)
        )

        _module._modules[name].to(weight.device)


def monkeypatch_or_replace_lora_extended(
    model,
    loras,
    target_replace_module=DEFAULT_TARGET_REPLACE,
    r: Union[int, List[int]] = 4,
):
    for _module, name, _child_module in _find_modules(
        model,
        target_replace_module,
        search_class=[nn.Linear, LoraInjectedLinear, nn.Conv2d, LoraInjectedConv2d],
    ):

        if (_child_module.__class__ == nn.Linear) or (
            _child_module.__class__ == LoraInjectedLinear
        ):
            if len(loras[0].shape) != 2:
                continue

            _source = (
                _child_module.linear
                if isinstance(_child_module, LoraInjectedLinear)
                else _child_module
            )

            weight = _source.weight
            bias = _source.bias
            _tmp = LoraInjectedLinear(
                _source.in_features,
                _source.out_features,
                _source.bias is not None,
                r=r.pop(0) if isinstance(r, list) else r,
            )
            _tmp.linear.weight = weight

            if bias is not None:
                _tmp.linear.bias = bias

        elif (_child_module.__class__ == nn.Conv2d) or (
            _child_module.__class__ == LoraInjectedConv2d
        ):
            if len(loras[0].shape) != 4:
                continue
            _source = (
                _child_module.conv
                if isinstance(_child_module, LoraInjectedConv2d)
                else _child_module
            )

            weight = _source.weight
            bias = _source.bias
            _tmp = LoraInjectedConv2d(
                _source.in_channels,
                _source.out_channels,
                _source.kernel_size,
                _source.stride,
                _source.padding,
                _source.dilation,
                _source.groups,
                _source.bias is not None,
                r=r.pop(0) if isinstance(r, list) else r,
            )

            _tmp.conv.weight = weight

            if bias is not None:
                _tmp.conv.bias = bias

        # switch the module
        _module._modules[name] = _tmp

        up_weight = loras.pop(0)
        down_weight = loras.pop(0)

        _module._modules[name].lora_up.weight = nn.Parameter(
            up_weight.type(weight.dtype)
        )
        _module._modules[name].lora_down.weight = nn.Parameter(
            down_weight.type(weight.dtype)
        )

        _module._modules[name].to(weight.device)


def monkeypatch_or_replace_safeloras(models, safeloras):
    loras = parse_safeloras(safeloras)

    for name, (lora, ranks, target) in loras.items():
        model = getattr(models, name, None)

        if not model:
            print(f"No model provided for {name}, contained in Lora")
            continue

        monkeypatch_or_replace_lora_extended(model, lora, target, ranks)


def monkeypatch_remove_lora(model):
    for _module, name, _child_module in _find_modules(
        model, search_class=[LoraInjectedLinear, LoraInjectedConv2d]
    ):
        if isinstance(_child_module, LoraInjectedLinear):
            _source = _child_module.linear
            weight, bias = _source.weight, _source.bias

            _tmp = nn.Linear(
                _source.in_features, _source.out_features, bias is not None
            )

            _tmp.weight = weight
            if bias is not None:
                _tmp.bias = bias

        else:
            _source = _child_module.conv
            weight, bias = _source.weight, _source.bias

            _tmp = nn.Conv2d(
                in_channels=_source.in_channels,
                out_channels=_source.out_channels,
                kernel_size=_source.kernel_size,
                stride=_source.stride,
                padding=_source.padding,
                dilation=_source.dilation,
                groups=_source.groups,
                bias=bias is not None,
            )

            _tmp.weight = weight
            if bias is not None:
                _tmp.bias = bias

        _module._modules[name] = _tmp


def monkeypatch_add_lora(
    model,
    loras,
    target_replace_module=DEFAULT_TARGET_REPLACE,
    alpha: float = 1.0,
    beta: float = 1.0,
):
    for _module, name, _child_module in _find_modules(
        model, target_replace_module, search_class=[LoraInjectedLinear]
    ):
        weight = _child_module.linear.weight

        up_weight = loras.pop(0)
        down_weight = loras.pop(0)

        _module._modules[name].lora_up.weight = nn.Parameter(
            up_weight.type(weight.dtype).to(weight.device) * alpha
            + _module._modules[name].lora_up.weight.to(weight.device) * beta
        )
        _module._modules[name].lora_down.weight = nn.Parameter(
            down_weight.type(weight.dtype).to(weight.device) * alpha
            + _module._modules[name].lora_down.weight.to(weight.device) * beta
        )

        _module._modules[name].to(weight.device)


def tune_lora_scale(model, alpha: float = 1.0):
    for _module in model.modules():
        if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d"]:
            _module.scale = alpha


def set_lora_diag(model, diag: torch.Tensor):
    for _module in model.modules():
        if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d"]:
            _module.set_selector_from_diag(diag)


def _text_lora_path(path: str) -> str:
    assert path.endswith(".pt"), "Only .pt files are supported"
    return ".".join(path.split(".")[:-1] + ["text_encoder", "pt"])


def _ti_lora_path(path: str) -> str:
    assert path.endswith(".pt"), "Only .pt files are supported"
    return ".".join(path.split(".")[:-1] + ["ti", "pt"])


def apply_learned_embed_in_clip(
    learned_embeds,
    text_encoder,
    tokenizer,
    token: Optional[Union[str, List[str]]] = None,
    idempotent=False,
):
    if isinstance(token, str):
        trained_tokens = [token]
    elif isinstance(token, list):
        assert len(learned_embeds.keys()) == len(
            token
        ), "The number of tokens and the number of embeds should be the same"
        trained_tokens = token
    else:
        trained_tokens = list(learned_embeds.keys())

    for token in trained_tokens:
        print(token)
        embeds = learned_embeds[token]

        # cast to dtype of text_encoder
        dtype = text_encoder.get_input_embeddings().weight.dtype
        num_added_tokens = tokenizer.add_tokens(token)

        i = 1
        if not idempotent:
            while num_added_tokens == 0:
                print(f"The tokenizer already contains the token {token}.")
                token = f"{token[:-1]}-{i}>"
                print(f"Attempting to add the token {token}.")
                num_added_tokens = tokenizer.add_tokens(token)
                i += 1
        elif num_added_tokens == 0 and idempotent:
            print(f"The tokenizer already contains the token {token}.")
            print(f"Replacing {token} embedding.")

        # resize the token embeddings
        text_encoder.resize_token_embeddings(len(tokenizer))

        # get the id for the token and assign the embeds
        token_id = tokenizer.convert_tokens_to_ids(token)
        text_encoder.get_input_embeddings().weight.data[token_id] = embeds
    return token


def load_learned_embed_in_clip(
    learned_embeds_path,
    text_encoder,
    tokenizer,
    token: Optional[Union[str, List[str]]] = None,
    idempotent=False,
):
    learned_embeds = torch.load(learned_embeds_path)
    apply_learned_embed_in_clip(
        learned_embeds, text_encoder, tokenizer, token, idempotent
    )


def patch_pipe(
    pipe,
    maybe_unet_path,
    token: Optional[str] = None,
    r: int = 4,
    patch_unet=True,
    patch_text=True,
    patch_ti=True,
    idempotent_token=True,
    unet_target_replace_module=DEFAULT_TARGET_REPLACE,
    text_target_replace_module=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
):
    if maybe_unet_path.endswith(".pt"):
        # torch format

        if maybe_unet_path.endswith(".ti.pt"):
            unet_path = maybe_unet_path[:-6] + ".pt"
        elif maybe_unet_path.endswith(".text_encoder.pt"):
            unet_path = maybe_unet_path[:-16] + ".pt"
        else:
            unet_path = maybe_unet_path

        ti_path = _ti_lora_path(unet_path)
        text_path = _text_lora_path(unet_path)

        if patch_unet:
            print("LoRA : Patching Unet")
            monkeypatch_or_replace_lora(
                pipe.unet,
                torch.load(unet_path),
                r=r,
                target_replace_module=unet_target_replace_module,
            )

        if patch_text:
            print("LoRA : Patching text encoder")
            monkeypatch_or_replace_lora(
                pipe.text_encoder,
                torch.load(text_path),
                target_replace_module=text_target_replace_module,
                r=r,
            )
        if patch_ti:
            print("LoRA : Patching token input")
            token = load_learned_embed_in_clip(
                ti_path,
                pipe.text_encoder,
                pipe.tokenizer,
                token=token,
                idempotent=idempotent_token,
            )

    elif maybe_unet_path.endswith(".safetensors"):
        safeloras = safe_open(maybe_unet_path, framework="pt", device="cpu")
        monkeypatch_or_replace_safeloras(pipe, safeloras)
        tok_dict = parse_safeloras_embeds(safeloras)
        if patch_ti:
            apply_learned_embed_in_clip(
                tok_dict,
                pipe.text_encoder,
                pipe.tokenizer,
                token=token,
                idempotent=idempotent_token,
            )
        return tok_dict


@torch.no_grad()
def inspect_lora(model):
    moved = {}

    for name, _module in model.named_modules():
        if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d"]:
            ups = _module.lora_up.weight.data.clone()
            downs = _module.lora_down.weight.data.clone()

            wght: torch.Tensor = ups.flatten(1) @ downs.flatten(1)

            dist = wght.flatten().abs().mean().item()
            if name in moved:
                moved[name].append(dist)
            else:
                moved[name] = [dist]

    return moved


def save_all(
    unet,
    text_encoder,
    save_path,
    placeholder_token_ids=None,
    placeholder_tokens=None,
    save_lora=True,
    save_ti=True,
    target_replace_module_text=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
    target_replace_module_unet=DEFAULT_TARGET_REPLACE,
    safe_form=True,
):
    if not safe_form:
        # save ti
        if save_ti:
            ti_path = _ti_lora_path(save_path)
            learned_embeds_dict = {}
            for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
                learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
                print(
                    f"Current Learned Embeddings for {tok}:, id {tok_id} ",
                    learned_embeds[:4],
                )
                learned_embeds_dict[tok] = learned_embeds.detach().cpu()

            torch.save(learned_embeds_dict, ti_path)
            print("Ti saved to ", ti_path)

        # save text encoder
        if save_lora:

            save_lora_weight(
                unet, save_path, target_replace_module=target_replace_module_unet
            )
            print("Unet saved to ", save_path)

            save_lora_weight(
                text_encoder,
                _text_lora_path(save_path),
                target_replace_module=target_replace_module_text,
            )
            print("Text Encoder saved to ", _text_lora_path(save_path))

    else:
        assert save_path.endswith(
            ".safetensors"
        ), f"Save path : {save_path} should end with .safetensors"

        loras = {}
        embeds = {}

        if save_lora:

            loras["unet"] = (unet, target_replace_module_unet)
            loras["text_encoder"] = (text_encoder, target_replace_module_text)

        if save_ti:
            for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
                learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
                print(
                    f"Current Learned Embeddings for {tok}:, id {tok_id} ",
                    learned_embeds[:4],
                )
                embeds[tok] = learned_embeds.detach().cpu()

        save_safeloras_with_embeds(loras, embeds, save_path)