File size: 10,750 Bytes
0c7479d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Edit Anything trained with Stable Diffusion + ControlNet + SAM  + BLIP2
from diffusers.utils import load_image
from diffusers import UniPCMultistepScheduler
from torchvision.utils import save_image
from PIL import Image
from pytorch_lightning import seed_everything
import subprocess
from collections import OrderedDict

import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import os
from annotator.util import resize_image, HWC3
import base64
from io import BytesIO

from utils.stable_diffusion_controlnet import StableDiffusionControlNetPipeline2, ControlNetModel2


def create_demo():
    MAX_COLORS = 12
    canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
    load_js = """
    async () => {
    const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
    fetch(url)
      .then(res => res.text())
      .then(text => {
        const script = document.createElement('script');
        script.type = "module"
        script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
        document.head.appendChild(script);
      });
    }
    """

    get_js_colors = """
    async (canvasData) => {
      const canvasEl = document.getElementById("canvas-root");
      return [canvasEl._data]
    }
    """

    set_canvas_size = """
    async (aspect) => {
      if(aspect ==='square'){
        _updateCanvas(512,512)
      }
      if(aspect ==='horizontal'){
        _updateCanvas(768,512)
      }
      if(aspect ==='vertical'){
        _updateCanvas(512,768)
      }
    }
    """

    device = "cuda" if torch.cuda.is_available() else "cpu"
    # aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio", visible=False if is_shared_ui else True)

    # Diffusion init using diffusers.
    # diffusers==0.14.0 required.

    base_model_path = "stabilityai/stable-diffusion-2-1"

    config_dict = OrderedDict([('SAM Pretrained(v0-1)', 'shgao/edit-anything-v0-1-1'),
                               ('LAION Pretrained(v0-3)', 'shgao/edit-anything-v0-3'),
                               ('LAION Pretrained(v0-4)', 'shgao/edit-anything-v0-4-sd21'),
                               ])

    def obtain_generation_model(controlnet_path):
        controlnet = ControlNetModel2.from_pretrained(
            controlnet_path, torch_dtype=torch.float16)
        pipe = StableDiffusionControlNetPipeline2.from_pretrained(
            base_model_path, controlnet=controlnet, torch_dtype=torch.float16
        )
        # speed up diffusion process with faster scheduler and memory optimization
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        # remove following line if xformers is not installed
        pipe.enable_xformers_memory_efficient_attention()
        # pipe.enable_model_cpu_offload() # disable for now because of unknow bug in accelerate
        pipe.to(device)
        return pipe

    global default_controlnet_path
    default_controlnet_path = config_dict['LAION Pretrained(v0-4)']
    pipe = obtain_generation_model(default_controlnet_path)

    def get_sam_control(image):
        im2arr = np.array(image)
        colors_map, res = None, None
        ptr = 0
        for color in colors:
            r, g, b = color
            if any(c != 255 for c in (r, g, b)):
                binary_matrix = np.all(im2arr == (r, g, b), axis=-1)
                if colors_map is None:
                    colors_map = np.zeros((im2arr.shape[0], im2arr.shape[1]), dtype=np.uint16)
                    res = np.zeros((im2arr.shape[0], im2arr.shape[1], 3))
                colors_map[binary_matrix != 0] = ptr + 1
                ptr += 1
        white = np.all(im2arr == (255, 255, 255), axis=-1)
        scale_map = (white != 1).astype(np.float32)
        res[:, :, 0] = colors_map % 256
        res[:, :, 1] = colors_map // 256
        res.astype(np.float32)
        return image, res, scale_map

    def process_sketch(canvas_data):
        nonlocal colors
        base64_img = canvas_data['image']
        image_data = base64.b64decode(base64_img.split(',')[1])
        image = Image.open(BytesIO(image_data)).convert("RGB")
        colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']]
        print(colors)
        # binary_matrixes['sketch'] = res
        return image, "sketch loaded."

    def process(condition_model, input_image, control_scale, prompt, a_prompt, n_prompt,
                num_samples, image_resolution, ddim_steps, guess_mode, use_scale_map, strength, scale, seed, eta):

        global default_controlnet_path
        global pipe
        print("To Use:", config_dict[condition_model], "Current:", default_controlnet_path)
        if default_controlnet_path != config_dict[condition_model]:
            print("Change condition model to:", config_dict[condition_model])
            pipe = obtain_generation_model(config_dict[condition_model])
            default_controlnet_path = config_dict[condition_model]

        with torch.no_grad():
            print("All text:", prompt)

            input_image = HWC3(input_image)

            img = resize_image(input_image, image_resolution)
            H, W, C = img.shape

            # the default SAM model is trained with 1024 size.
            fullseg, detected_map, scale_map = get_sam_control(input_image)

            detected_map = HWC3(detected_map.astype(np.uint8))
            detected_map = cv2.resize(
                detected_map, (W, H), interpolation=cv2.INTER_LINEAR)

            control = torch.from_numpy(
                detected_map.copy()).float().cuda()
            control = torch.stack([control for _ in range(num_samples)], dim=0)
            control = einops.rearrange(control, 'b h w c -> b c h w').clone()

            scale_map = torch.from_numpy(scale_map).float().cuda() if use_scale_map else None

            if seed == -1:
                seed = random.randint(0, 65535)
            seed_everything(seed)
            print("control.shape", control.shape)
            generator = torch.manual_seed(seed)
            x_samples = pipe(
                prompt=[prompt + ', ' + a_prompt] * num_samples,
                negative_prompt=[n_prompt] * num_samples,
                num_images_per_prompt=num_samples,
                num_inference_steps=ddim_steps,
                generator=generator,
                height=H,
                width=W,
                controlnet_conditioning_scale=float(control_scale),
                controlnet_conditioning_scale_map=scale_map,
                image=control.type(torch.float16),
            ).images

            results = [x_samples[i] for i in range(num_samples)]
        return [fullseg] + results, prompt, "waiting for sketch..."

    # disable gradio when not using GUI.
    block = gr.Blocks()
    with block as demo:
        colors = []
        with gr.Row():
            gr.Markdown(
                "## Generate Anything")
        with gr.Row():
            with gr.Column():
                canvas_data = gr.JSON(value={}, visible=False)
                canvas = gr.HTML(canvas_html)
                aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio",
                                  visible=False)
                button_run = gr.Button("I've finished my sketch", elem_id="main_button", interactive=True)
                result_text1 = gr.Text(label='sketch status:')

            with gr.Column(visible=True) as post_sketch:
                input_image = gr.Image(type="numpy", visible=False)
                prompt = gr.Textbox(label="Prompt (Optional)")
                run_button = gr.Button(label="Run")
                condition_model = gr.Dropdown(choices=list(config_dict.keys()),
                                              value=list(config_dict.keys())[0],
                                              label='Model',
                                              multiselect=False)
                control_scale = gr.Slider(
                    label="Mask Align strength", info="Large value -> strict alignment with SAM mask", minimum=0,
                    maximum=1, value=1, step=0.1)
                num_samples = gr.Slider(
                    label="Images", minimum=1, maximum=12, value=1, step=1)

                # enable_auto_prompt = True
                with gr.Accordion("Advanced options", open=False):
                    image_resolution = gr.Slider(
                        label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
                    strength = gr.Slider(
                        label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
                    guess_mode = gr.Checkbox(label='Guess Mode', value=False)
                    use_scale_map = gr.Checkbox(label='Use scale map', value=False)
                    ddim_steps = gr.Slider(
                        label="Steps", minimum=1, maximum=100, value=20, step=1)
                    scale = gr.Slider(
                        label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                    seed = gr.Slider(label="Seed", minimum=-1,
                                     maximum=2147483647, step=1, randomize=True)
                    eta = gr.Number(label="eta (DDIM)", value=0.0)
                    a_prompt = gr.Textbox(
                        label="Added Prompt", value='best quality, extremely detailed')
                    n_prompt = gr.Textbox(label="Negative Prompt",
                                          value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')

            with gr.Column():
                result_gallery = gr.Gallery(
                    label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
                result_text = gr.Text(label='BLIP2+Human Prompt Text')
        aspect.change(None, inputs=[aspect], outputs=None, _js=set_canvas_size)
        button_run.click(process_sketch, inputs=[canvas_data],
                         outputs=[input_image, result_text1], _js=get_js_colors, queue=False)
        ips = [condition_model, input_image, control_scale, prompt, a_prompt, n_prompt,
               num_samples, image_resolution, ddim_steps, guess_mode, use_scale_map, strength, scale, seed, eta]
        run_button.click(fn=process, inputs=ips, outputs=[result_gallery, result_text, result_text1])
        demo.load(None, None, None, _js=load_js)
        return demo


if __name__ == '__main__':
    demo = create_demo()
    demo.queue().launch(server_name='0.0.0.0', share=True)