jiachenl's picture
update examples
d3bf2d7
# ------------------------------------------------------------------------
# Modified from Grounded-SAM (https://github.com/IDEA-Research/Grounded-Segment-Anything)
# ------------------------------------------------------------------------
import os
import sys
import random
import warnings
os.system("export BUILD_WITH_CUDA=True")
os.system("python -m pip install -e segment-anything")
os.system("python -m pip install -e GroundingDINO")
os.system("pip install --upgrade diffusers[torch]")
#os.system("pip install opencv-python pycocotools matplotlib")
sys.path.insert(0, './GroundingDINO')
sys.path.insert(0, './segment-anything')
warnings.filterwarnings("ignore")
import cv2
from scipy import ndimage
import gradio as gr
import argparse
import numpy as np
import torch
from torch.nn import functional as F
import torchvision
import networks
import utils
# Grounding DINO
from groundingdino.util.inference import Model
# SAM
from segment_anything.utils.transforms import ResizeLongestSide
# SD
from diffusers import StableDiffusionPipeline
transform = ResizeLongestSide(1024)
# Green Screen
PALETTE_back = (51, 255, 146)
GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
GROUNDING_DINO_CHECKPOINT_PATH = "checkpoints/groundingdino_swint_ogc.pth"
mam_checkpoint="checkpoints/mam_sam_vitb.pth"
output_dir="outputs"
device = 'cuda'
background_list = os.listdir('assets/backgrounds')
# initialize MAM
mam_model = networks.get_generator_m2m(seg='sam', m2m='sam_decoder_deep')
mam_model.to(device)
checkpoint = torch.load(mam_checkpoint, map_location=device)
mam_model.load_state_dict(utils.remove_prefix_state_dict(checkpoint['state_dict']), strict=True)
mam_model = mam_model.eval()
# initialize GroundingDINO
grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=device)
# initialize StableDiffusionPipeline
generator = StableDiffusionPipeline.from_pretrained("checkpoints/stable-diffusion-v1-5", torch_dtype=torch.float16)
generator.to(device)
def run_grounded_sam(input_image, text_prompt, task_type, background_prompt, background_type, box_threshold, text_threshold, iou_threshold, scribble_mode, guidance_mode):
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image_ori = input_image["image"]
scribble = input_image["mask"]
original_size = image_ori.shape[:2]
if task_type == 'text':
if text_prompt is None:
print('Please input non-empty text prompt')
with torch.no_grad():
detections, phrases = grounding_dino_model.predict_with_caption(
image=cv2.cvtColor(image_ori, cv2.COLOR_RGB2BGR),
caption=text_prompt,
box_threshold=box_threshold,
text_threshold=text_threshold
)
if len(detections.xyxy) > 1:
nms_idx = torchvision.ops.nms(
torch.from_numpy(detections.xyxy),
torch.from_numpy(detections.confidence),
iou_threshold,
).numpy().tolist()
detections.xyxy = detections.xyxy[nms_idx]
detections.confidence = detections.confidence[nms_idx]
bbox = detections.xyxy[np.argmax(detections.confidence)]
bbox = transform.apply_boxes(bbox, original_size)
bbox = torch.as_tensor(bbox, dtype=torch.float).to(device)
image = transform.apply_image(image_ori)
image = torch.as_tensor(image).to(device)
image = image.permute(2, 0, 1).contiguous()
pixel_mean = torch.tensor([123.675, 116.28, 103.53]).view(3,1,1).to(device)
pixel_std = torch.tensor([58.395, 57.12, 57.375]).view(3,1,1).to(device)
image = (image - pixel_mean) / pixel_std
h, w = image.shape[-2:]
pad_size = image.shape[-2:]
padh = 1024 - h
padw = 1024 - w
image = F.pad(image, (0, padw, 0, padh))
if task_type == 'scribble_point':
scribble = scribble.transpose(2, 1, 0)[0]
labeled_array, num_features = ndimage.label(scribble >= 255)
centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
centers = np.array(centers)
### (x,y)
centers = transform.apply_coords(centers, original_size)
point_coords = torch.from_numpy(centers).to(device)
point_coords = point_coords.unsqueeze(0).to(device)
point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device)
if scribble_mode == 'split':
point_coords = point_coords.permute(1, 0, 2)
point_labels = point_labels.permute(1, 0)
sample = {'image': image.unsqueeze(0), 'point': point_coords, 'label': point_labels, 'ori_shape': original_size, 'pad_shape': pad_size}
elif task_type == 'scribble_box':
scribble = scribble.transpose(2, 1, 0)[0]
labeled_array, num_features = ndimage.label(scribble >= 255)
centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
centers = np.array(centers)
### (x1, y1, x2, y2)
x_min = centers[:, 0].min()
x_max = centers[:, 0].max()
y_min = centers[:, 1].min()
y_max = centers[:, 1].max()
bbox = np.array([x_min, y_min, x_max, y_max])
bbox = transform.apply_boxes(bbox, original_size)
bbox = torch.as_tensor(bbox, dtype=torch.float).to(device)
sample = {'image': image.unsqueeze(0), 'bbox': bbox.unsqueeze(0), 'ori_shape': original_size, 'pad_shape': pad_size}
elif task_type == 'text':
sample = {'image': image.unsqueeze(0), 'bbox': bbox.unsqueeze(0), 'ori_shape': original_size, 'pad_shape': pad_size}
else:
print("task_type:{} error!".format(task_type))
with torch.no_grad():
feas, pred, post_mask = mam_model.forward_inference(sample)
alpha_pred_os1, alpha_pred_os4, alpha_pred_os8 = pred['alpha_os1'], pred['alpha_os4'], pred['alpha_os8']
alpha_pred_os8 = alpha_pred_os8[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]
alpha_pred_os4 = alpha_pred_os4[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]
alpha_pred_os1 = alpha_pred_os1[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]
alpha_pred_os8 = F.interpolate(alpha_pred_os8, sample['ori_shape'], mode="bilinear", align_corners=False)
alpha_pred_os4 = F.interpolate(alpha_pred_os4, sample['ori_shape'], mode="bilinear", align_corners=False)
alpha_pred_os1 = F.interpolate(alpha_pred_os1, sample['ori_shape'], mode="bilinear", align_corners=False)
if guidance_mode == 'mask':
weight_os8 = utils.get_unknown_tensor_from_mask_oneside(post_mask, rand_width=10, train_mode=False)
post_mask[weight_os8>0] = alpha_pred_os8[weight_os8>0]
alpha_pred = post_mask.clone().detach()
else:
weight_os8 = utils.get_unknown_box_from_mask(post_mask)
alpha_pred_os8[weight_os8>0] = post_mask[weight_os8>0]
alpha_pred = alpha_pred_os8.clone().detach()
weight_os4 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=20, train_mode=False)
alpha_pred[weight_os4>0] = alpha_pred_os4[weight_os4>0]
weight_os1 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=10, train_mode=False)
alpha_pred[weight_os1>0] = alpha_pred_os1[weight_os1>0]
alpha_pred = alpha_pred[0][0].cpu().numpy()
#### draw
### alpha matte
alpha_rgb = cv2.cvtColor(np.uint8(alpha_pred*255), cv2.COLOR_GRAY2RGB)
### com img with background
if background_type == 'real_world_sample':
background_img_file = os.path.join('assets/backgrounds', random.choice(background_list))
background_img = cv2.imread(background_img_file)
background_img = cv2.cvtColor(background_img, cv2.COLOR_BGR2RGB)
background_img = cv2.resize(background_img, (image_ori.shape[1], image_ori.shape[0]))
com_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.uint8(background_img)
com_img = np.uint8(com_img)
else:
if background_prompt is None:
print('Please input non-empty background prompt')
else:
background_img = generator(background_prompt).images[0]
background_img = np.array(background_img)
background_img = cv2.resize(background_img, (image_ori.shape[1], image_ori.shape[0]))
com_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.uint8(background_img)
com_img = np.uint8(com_img)
### com img with green screen
green_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.array([PALETTE_back], dtype='uint8')
green_img = np.uint8(green_img)
return [(com_img, 'composite with background'), (green_img, 'green screen'), (alpha_rgb, 'alpha matte')]
if __name__ == "__main__":
parser = argparse.ArgumentParser("MAM demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
parser.add_argument('--port', type=int, default=7589, help='port to run the server')
parser.add_argument('--no-gradio-queue', action="store_true", help='path to the SAM checkpoint')
args = parser.parse_args()
print(args)
block = gr.Blocks()
if not args.no_gradio_queue:
block = block.queue()
with block:
gr.Markdown(
"""
# Matting Anything
[Jiachen Li](https://chrisjuniorli.github.io/),
[Jitesh Jain](https://praeclarumjj3.github.io/),
[Humphrey Shi](https://www.humphreyshi.com/home)
[[`Project page`](https://chrisjuniorli.github.io/project/Matting-Anything/)]
[[`ArXiv`](https://arxiv.org/abs/2306.05399)]
[[`Code`](https://github.com/SHI-Labs/Matting-Anything)]
[[`Video`](https://www.youtube.com/watch?v=XY2Q0HATGOk)]
Welcome to the Matting Anything demo and upload your image to get started <br/>
You may select different prompt types to get the alpha matte of target instance, and select different backgrounds for image composition. The local setup instructions of the demo is available at: https://github.com/SHI-Labs/Matting-Anything
## Usage
You may check the <a href='https://www.youtube.com/watch?v=XY2Q0HATGOk'>video</a> to see how to play with the demo, or check the details below.
<details>
You may upload an image to start, we support 3 prompt types to get the alpha matte of the target instance:
**scribble_point**: Click an point on the target instance.
**scribble_box**: Click on two points, the top-left point and the bottom-right point to represent a bounding box of the target instance.
**text**: Send text prompt to identify the target instance in the `Text prompt` box.
We also support 2 background types to support image composition with the alpha matte output:
**real_world_sample**: Randomly select a real-world image from `assets/backgrounds` for composition.
**generated_by_text**: Send background text prompt to create a background image with stable diffusion model in the `Background prompt` box.
**guidance_mode**: Try mask guidance if alpha guidacne didn't return satisfying outputs
</details>
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy", value="assets/demo.jpg", tool="sketch")
task_type = gr.Dropdown(["scribble_point", "scribble_box", "text"], value="text", label="Prompt type")
text_prompt = gr.Textbox(label="Text prompt", placeholder="the girl in the middle")
background_type = gr.Dropdown(["generated_by_text", "real_world_sample"], value="generated_by_text", label="Background type")
background_prompt = gr.Textbox(label="Background prompt", placeholder="downtown area in New York")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
)
iou_threshold = gr.Slider(
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.05
)
scribble_mode = gr.Dropdown(
["merge", "split"], value="split", label="scribble_mode"
)
guidance_mode = gr.Dropdown(
["mask", "alpha"], value="alpha", label="guidance_mode", info="mask guidance works better on complex scenes with multiple instances, alpha guidance works better on simple scene with human instances"
)
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=True, elem_id="gallery"
).style(preview=True, grid=3, object_fit="scale-down")
run_button.click(fn=run_grounded_sam, inputs=[
input_image, text_prompt, task_type, background_prompt, background_type, box_threshold, text_threshold, iou_threshold, scribble_mode, guidance_mode], outputs=gallery)
gr.Markdown(
"""
## Examples
| input image | text prompt | background type | background prompt | guidance mode | composite with background | green screen |
|-------------|------------|--------------|--------------|--------------|--------------|--------------|
| <img src="file=assets/examples/demo.jpg" width="100" height="100"> | the girl in the middle | real-world sample | None | alpha | <img src="file=assets/examples/demo_bg.jpg" width="100" height="100"> | <img src="file=assets/examples/demo_green.jpg" width="100" height="100"> |
| <img src="file=assets/examples/img1.jpg" width="100" height="100"> | the girl in the middle | generated by text | downtown area in chicago | alpha | <img src="file=assets/examples/img1_bg.jpg" width="100" height="100"> | <img src="file=assets/examples/img1_green.jpg" width="100" height="100"> |
| <img src="file=assets/examples/img2.jpeg" width="100" height="100"> | the dog sitting the left side | generated by text | national park view | mask | <img src="file=assets/examples/img2_bg.jpg" width="100" height="100"> | <img src="file=assets/examples/img2_green.jpg" width="100" height="100"> |
| <img src="file=assets/examples/img2.jpeg" width="100" height="100"> | the bigger dog sitting the right side | real-world sample | None | mask | <img src="file=assets/examples/img2_bg_2.jpg" width="100" height="100"> | <img src="file=assets/examples/img2_green_2.jpg" width="100" height="100"> |
| <img src="file=assets/examples/img3.jpg" width="100" height="100"> | the girl with red sweater | real-world sample | None | alpha | <img src="file=assets/examples/img3_bg.jpg" width="100" height="100"> | <img src="file=assets/examples/img3_green.jpg" width="100" height="100"> |
| <img src="file=assets/examples/img3.jpg" width="100" height="100"> | the girl with black sweater | generated by text | sunrise on the sea | alpha | <img src="file=assets/examples/img3_bg_2.jpg" width="100" height="100"> | <img src="file=assets/examples/img3_green_2.jpg" width="100" height="100"> |
""")
block.launch(debug=args.debug, share=args.share, show_error=True)
#block.queue(concurrency_count=100)
#block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)