jiachenl's picture
update hf demo
05ff3be
import os
import cv2
import torch
import logging
import numpy as np
from utils.config import CONFIG
import torch.distributed as dist
import torch.nn.functional as F
from skimage.measure import label
import pdb
def make_dir(target_dir):
"""
Create dir if not exists
"""
if not os.path.exists(target_dir):
os.makedirs(target_dir)
def print_network(model, name):
"""
Print out the network information
"""
logger = logging.getLogger("Logger")
num_params = 0
for p in model.parameters():
num_params += p.numel()
logger.info(model)
logger.info(name)
logger.info("Number of parameters: {}".format(num_params))
def update_lr(lr, optimizer):
"""
update learning rates
"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def warmup_lr(init_lr, step, iter_num):
"""
Warm up learning rate
"""
return step/iter_num*init_lr
def add_prefix_state_dict(state_dict, prefix="module"):
"""
add prefix from the key of pretrained state dict for Data-Parallel
"""
new_state_dict = {}
first_state_name = list(state_dict.keys())[0]
if not first_state_name.startswith(prefix):
for key, value in state_dict.items():
new_state_dict[prefix+"."+key] = state_dict[key].float()
else:
for key, value in state_dict.items():
new_state_dict[key] = state_dict[key].float()
return new_state_dict
def remove_prefix_state_dict(state_dict, prefix="module"):
"""
remove prefix from the key of pretrained state dict for Data-Parallel
"""
new_state_dict = {}
first_state_name = list(state_dict.keys())[0]
if not first_state_name.startswith(prefix):
for key, value in state_dict.items():
new_state_dict[key] = state_dict[key].float()
else:
for key, value in state_dict.items():
new_state_dict[key[len(prefix)+1:]] = state_dict[key].float()
return new_state_dict
def load_imagenet_pretrain(model, checkpoint_file):
"""
Load imagenet pretrained resnet
Add zeros channel to the first convolution layer
Since we have the spectral normalization, we need to do a little more
"""
checkpoint = torch.load(checkpoint_file, map_location = lambda storage, loc: storage.cuda(CONFIG.gpu))
state_dict = remove_prefix_state_dict(checkpoint['state_dict'])
for key, value in state_dict.items():
state_dict[key] = state_dict[key].float()
logger = logging.getLogger("Logger")
logger.debug("Imagenet pretrained keys:")
logger.debug(state_dict.keys())
logger.debug("Generator keys:")
logger.debug(model.module.encoder.state_dict().keys())
logger.debug("Intersection keys:")
logger.debug(set(model.module.encoder.state_dict().keys())&set(state_dict.keys()))
weight_u = state_dict["conv1.module.weight_u"]
weight_v = state_dict["conv1.module.weight_v"]
weight_bar = state_dict["conv1.module.weight_bar"]
logger.debug("weight_v: {}".format(weight_v))
logger.debug("weight_bar: {}".format(weight_bar.view(32, -1)))
logger.debug("sigma: {}".format(weight_u.dot(weight_bar.view(32, -1).mv(weight_v))))
new_weight_v = torch.zeros((3+CONFIG.model.mask_channel), 3, 3).cuda()
new_weight_bar = torch.zeros(32, (3+CONFIG.model.mask_channel), 3, 3).cuda()
new_weight_v[:3, :, :].copy_(weight_v.view(3, 3, 3))
new_weight_bar[:, :3, :, :].copy_(weight_bar)
logger.debug("new weight_v: {}".format(new_weight_v.view(-1)))
logger.debug("new weight_bar: {}".format(new_weight_bar.view(32, -1)))
logger.debug("new sigma: {}".format(weight_u.dot(new_weight_bar.view(32, -1).mv(new_weight_v.view(-1)))))
state_dict["conv1.module.weight_v"] = new_weight_v.view(-1)
state_dict["conv1.module.weight_bar"] = new_weight_bar
model.module.encoder.load_state_dict(state_dict, strict=False)
def load_imagenet_pretrain_nomask(model, checkpoint_file):
"""
Load imagenet pretrained resnet
Add zeros channel to the first convolution layer
Since we have the spectral normalization, we need to do a little more
"""
checkpoint = torch.load(checkpoint_file, map_location = lambda storage, loc: storage.cuda(CONFIG.gpu))
state_dict = remove_prefix_state_dict(checkpoint['state_dict'])
for key, value in state_dict.items():
state_dict[key] = state_dict[key].float()
logger = logging.getLogger("Logger")
logger.debug("Imagenet pretrained keys:")
logger.debug(state_dict.keys())
logger.debug("Generator keys:")
logger.debug(model.module.encoder.state_dict().keys())
logger.debug("Intersection keys:")
logger.debug(set(model.module.encoder.state_dict().keys())&set(state_dict.keys()))
#weight_u = state_dict["conv1.module.weight_u"]
#weight_v = state_dict["conv1.module.weight_v"]
#weight_bar = state_dict["conv1.module.weight_bar"]
#logger.debug("weight_v: {}".format(weight_v))
#logger.debug("weight_bar: {}".format(weight_bar.view(32, -1)))
#logger.debug("sigma: {}".format(weight_u.dot(weight_bar.view(32, -1).mv(weight_v))))
#new_weight_v = torch.zeros((3+CONFIG.model.mask_channel), 3, 3).cuda()
#new_weight_bar = torch.zeros(32, (3+CONFIG.model.mask_channel), 3, 3).cuda()
#new_weight_v[:3, :, :].copy_(weight_v.view(3, 3, 3))
#new_weight_bar[:, :3, :, :].copy_(weight_bar)
#logger.debug("new weight_v: {}".format(new_weight_v.view(-1)))
#logger.debug("new weight_bar: {}".format(new_weight_bar.view(32, -1)))
#logger.debug("new sigma: {}".format(weight_u.dot(new_weight_bar.view(32, -1).mv(new_weight_v.view(-1)))))
#state_dict["conv1.module.weight_v"] = new_weight_v.view(-1)
#state_dict["conv1.module.weight_bar"] = new_weight_bar
model.module.encoder.load_state_dict(state_dict, strict=False)
def load_VGG_pretrain(model, checkpoint_file):
"""
Load imagenet pretrained resnet
Add zeros channel to the first convolution layer
Since we have the spectral normalization, we need to do a little more
"""
checkpoint = torch.load(checkpoint_file, map_location = lambda storage, loc: storage.cuda())
backbone_state_dict = remove_prefix_state_dict(checkpoint['state_dict'])
model.module.encoder.load_state_dict(backbone_state_dict, strict=False)
def get_unknown_tensor(trimap):
"""
get 1-channel unknown area tensor from the 3-channel/1-channel trimap tensor
"""
if trimap.shape[1] == 3:
weight = trimap[:, 1:2, :, :].float()
else:
weight = trimap.eq(1).float()
return weight
def get_gaborfilter(angles):
"""
generate gabor filter as the conv kernel
:param angles: number of different angles
"""
gabor_filter = []
for angle in range(angles):
gabor_filter.append(cv2.getGaborKernel(ksize=(5,5), sigma=0.5, theta=angle*np.pi/8, lambd=5, gamma=0.5))
gabor_filter = np.array(gabor_filter)
gabor_filter = np.expand_dims(gabor_filter, axis=1)
return gabor_filter.astype(np.float32)
def get_gradfilter():
"""
generate gradient filter as the conv kernel
"""
grad_filter = []
grad_filter.append([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
grad_filter.append([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
grad_filter = np.array(grad_filter)
grad_filter = np.expand_dims(grad_filter, axis=1)
return grad_filter.astype(np.float32)
def reduce_tensor_dict(tensor_dict, mode='mean'):
"""
average tensor dict over different GPUs
"""
for key, tensor in tensor_dict.items():
if tensor is not None:
tensor_dict[key] = reduce_tensor(tensor, mode)
return tensor_dict
def reduce_tensor(tensor, mode='mean'):
"""
average tensor over different GPUs
"""
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
if mode == 'mean':
rt /= CONFIG.world_size
elif mode == 'sum':
pass
else:
raise NotImplementedError("reduce mode can only be 'mean' or 'sum'")
return rt
### preprocess the image and mask for inference (np array), crop based on ROI
def preprocess(image, mask, thres):
mask_ = (mask >= thres).astype(np.float32)
arr = np.nonzero(mask_)
h, w = mask.shape
bbox = [max(0, int(min(arr[0]) - 0.1*h)),
min(h, int(max(arr[0]) + 0.1*h)),
max(0, int(min(arr[1]) - 0.1*w)),
min(w, int(max(arr[1]) + 0.1*w))]
image = image[bbox[0]:bbox[1], bbox[2]:bbox[3], :]
mask = mask[bbox[0]:bbox[1], bbox[2]:bbox[3]]
return image, mask, bbox
### postprocess the alpha prediction to keep the largest connected component (np array) and uncrop, alpha in [0, 1]
### based on https://github.com/senguptaumd/Background-Matting/blob/master/test_background-matting_image.py
def postprocess(alpha, orih=None, oriw=None, bbox=None):
labels=label((alpha>0.05).astype(int))
try:
assert( labels.max() != 0 )
except:
return None
largestCC = labels == np.argmax(np.bincount(labels.flat)[1:])+1
alpha = alpha * largestCC
if bbox is None:
return alpha
else:
ori_alpha = np.zeros(shape=[orih, oriw], dtype=np.float32)
ori_alpha[bbox[0]:bbox[1], bbox[2]:bbox[3]] = alpha
return ori_alpha
Kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,30)]
def get_unknown_tensor_from_pred(pred, rand_width=30, train_mode=True):
### pred: N, 1 ,H, W
N, C, H, W = pred.shape
pred = pred.data.cpu().numpy()
uncertain_area = np.ones_like(pred, dtype=np.uint8)
uncertain_area[pred<1.0/255.0] = 0
uncertain_area[pred>1-1.0/255.0] = 0
for n in range(N):
uncertain_area_ = uncertain_area[n,0,:,:] # H, W
if train_mode:
width = np.random.randint(1, rand_width)
else:
width = rand_width // 2
uncertain_area_ = cv2.dilate(uncertain_area_, Kernels[width])
uncertain_area[n,0,:,:] = uncertain_area_
weight = np.zeros_like(uncertain_area)
weight[uncertain_area == 1] = 1
weight = torch.from_numpy(weight).cuda()
return weight
def get_unknown_tensor_from_pred_oneside(pred, rand_width=30, train_mode=True):
### pred: N, 1 ,H, W
N, C, H, W = pred.shape
pred = pred.data.cpu().numpy()
uncertain_area = np.ones_like(pred, dtype=np.uint8)
uncertain_area[pred<1.0/255.0] = 0
#uncertain_area[pred>1-1.0/255.0] = 0
for n in range(N):
uncertain_area_ = uncertain_area[n,0,:,:] # H, W
if train_mode:
width = np.random.randint(1, rand_width)
else:
width = rand_width // 2
uncertain_area_ = cv2.dilate(uncertain_area_, Kernels[width])
uncertain_area[n,0,:,:] = uncertain_area_
uncertain_area[pred>1-1.0/255.0] = 0
#weight = np.zeros_like(uncertain_area)
#weight[uncertain_area == 1] = 1
weight = torch.from_numpy(uncertain_area).cuda()
return weight
Kernels_mask = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,30)]
def get_unknown_tensor_from_mask(mask, rand_width=30, train_mode=True):
"""
get 1-channel unknown area tensor from the 3-channel/1-channel trimap tensor
"""
N, C, H, W = mask.shape
mask_c = mask.data.cpu().numpy().astype(np.uint8)
weight = np.ones_like(mask_c, dtype=np.uint8)
for n in range(N):
if train_mode:
width = np.random.randint(rand_width // 2, rand_width)
else:
width = rand_width // 2
fg_mask = cv2.erode(mask_c[n,0], Kernels_mask[width])
bg_mask = cv2.erode(1 - mask_c[n,0], Kernels_mask[width])
weight[n,0][fg_mask==1] = 0
weight[n,0][bg_mask==1] = 0
weight = torch.from_numpy(weight).cuda()
return weight
def get_unknown_tensor_from_mask_oneside(mask, rand_width=30, train_mode=True):
"""
get 1-channel unknown area tensor from the 3-channel/1-channel trimap tensor
"""
N, C, H, W = mask.shape
mask_c = mask.data.cpu().numpy().astype(np.uint8)
weight = np.ones_like(mask_c, dtype=np.uint8)
for n in range(N):
if train_mode:
width = np.random.randint(rand_width // 2, rand_width)
else:
width = rand_width // 2
#fg_mask = cv2.erode(mask_c[n,0], Kernels_mask[width])
fg_mask = mask_c[n,0]
bg_mask = cv2.erode(1 - mask_c[n,0], Kernels_mask[width])
weight[n,0][fg_mask==1] = 0
weight[n,0][bg_mask==1] = 0
weight = torch.from_numpy(weight).cuda()
return weight
def get_unknown_box_from_mask(mask):
"""
get 1-channel unknown area tensor from the 3-channel/1-channel trimap tensor
"""
N, C, H, W = mask.shape
mask_c = mask.data.cpu().numpy().astype(np.uint8)
weight = np.ones_like(mask_c, dtype=np.uint8)
fg_set = np.where(mask_c[0][0] != 0)
x_min = np.min(fg_set[1])
x_max = np.max(fg_set[1])
y_min = np.min(fg_set[0])
y_max = np.max(fg_set[0])
weight[0, 0, y_min:y_max, x_min:x_max] = 0
weight = torch.from_numpy(weight).cuda()
return weight