File size: 9,358 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import torch

from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from ola_vlm.conversation import conv_templates
from ola_vlm.model.builder import load_pretrained_model
from ola_vlm.utils import disable_torch_init
from ola_vlm.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead
from transformers import OneFormerProcessor

from PIL import Image
import json
import os
from tqdm import tqdm
from icecream import ic
import warnings
warnings.filterwarnings("ignore")
import random
import numpy as np
from analyze.analyze_utils import prepare_coco, prepare_da2k
import math
from diffusers import StableUnCLIPImg2ImgPipeline
from diffusers import DPMSolverMultistepScheduler


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]

def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

def load_image(image_file):
    image = Image.open(image_file).convert('RGB')
    return image

import glob

def list_image_files(directory):
    image_extensions = ['*.png', '*.jpg', '*.jpeg', '*.gif', '*.bmp', '*.tiff']
    image_files = []
    for extension in image_extensions:
        image_files.extend(glob.glob(os.path.join(directory, extension)))
    return image_files

def prep_seginw(dir):
    image_files = list_image_files(dir)
    prompts = []
    for image_file in image_files:
        prompts.append("Describe the image")
    return image_files, prompts, prompts

def predict(args):

    mode = args.mode

    name = args.model_path.split("/")[-1]
    os.makedirs(f"plots/probes_task/{name}/", exist_ok=True)

    # Model
    disable_torch_init()

    if mode == 'gen' or mode == 'seg':
        images, prompts, answers = prepare_coco(args.json_file)
    elif mode == 'depth':
        images, prompts, answers = prepare_da2k("/mnt/vlpdatasets/sherlock/eval/DA-2K/DA-2K/images", is_eval=True)        
    
    images = get_chunk(images, args.num_chunks, args.chunk_idx)
    prompts = get_chunk(prompts, args.num_chunks, args.chunk_idx)
    answers = get_chunk(answers, args.num_chunks, args.chunk_idx)
    
    model_name = get_model_name_from_path(args.model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)

    if mode == "gen":
        pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"playground/jiteshjain_sherlock/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16")
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
        pipe = pipe.to("cuda")

    elif mode == "seg":
        oneformer_processor = OneFormerProcessor.from_pretrained("/mnt/projects4jw/jiteshjain_sherlock/oneformer_coco_swin_large")
        oneformer = OneFormerHead.from_pretrained("/mnt/projects4jw/jiteshjain_sherlock/oneformer_coco_swin_large")
        oneformer = oneformer.to("cuda")
                
    if "mistral" in model_name.lower():
        conv_mode = "mistral_instruct"
    elif "v1.6-34b" in model_name.lower():
        conv_mode = "chatml_direct"
    elif "llama3" in model_name.lower():
        conv_mode = "llava_llama_3"
    elif "qwen" in model_name.lower():
        conv_mode = "qwen_1_5"
    elif "v1" in model_name.lower():
        conv_mode = "llava_v1"
    elif "phi" in model_name.lower():
        conv_mode = "llava_phi_3"

    set_seed(42)

    if mode == "gen":
        try:
            layers = model.config.image_gen["layer_indices"]
        except:
            layers = [i+1 for i in range(32)]
    elif mode == "depth":
        try:
            layers = model.config.image_depth["layer_indices"]
        except:
            layers = [i+1 for i in range(32)]
    elif mode == "seg":
        try:
            layers = model.config.image_seg["layer_indices"]
        except:
            layers = [i+1 for i in range(32)]

    from tqdm import tqdm
    for fname, prompt, answer in tqdm(zip(images, prompts, answers), total=len(prompts)):
        
        conv = conv_templates[conv_mode].copy()
        im = fname.split("/")[-1].split(".")[0]
        
        image = load_image(fname)
    
        image_size = image.size
        image_tensor = process_images([image], image_processor, model.config)
        if type(image_tensor) is list:
            image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
        else:
            image_tensor = image_tensor.to(model.device, dtype=torch.float16)
        
        inp = prompt
        if image is not None:
            if model.config.mm_use_im_start_end:
                inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
            else:
                inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
        
        conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)

        with torch.inference_mode():
            out = model.get_visual_interpretations(
                input_ids,
                images=image_tensor,
                image_sizes=image_size,
            )
        
        if mode == "seg":
            seg_embs = out.seg_embs
            inputs = oneformer_processor(image, ["semantic"], return_tensors="pt")
            inputs["pixel_values"] = inputs["pixel_values"].to(out.logits.device, out.logits.dtype)
            inputs["task_inputs"] = inputs["task_inputs"].to(out.logits.device, out.logits.dtype)
            backbone_features = oneformer.get_backbone_feats(**inputs)
            for i, seg_emb in enumerate(seg_embs):
                pred = oneformer.get_masks(**inputs, backbone_last_feature=seg_emb.float(), all_backbone_features=backbone_features)
                pred = oneformer_processor.post_process_semantic_segmentation(
                                        pred, target_sizes=[image.size[::-1]]
                                    )[0]
                pred = pred.squeeze().cpu().numpy().astype(np.uint8)
                pred = Image.fromarray(pred)
                if not os.path.exists(f"plots/probes_task/{name}/seg/layer_{layers[i]}"):
                    os.makedirs(f"plots/probes_task/{name}/seg/layer_{layers[i]}", exist_ok=True)
                save_path = os.path.join(f"plots/probes_task/{name}/seg/layer_{layers[i]}", fname.split("/")[-1].replace("jpg", "png"))
                pred.save(save_path)
                
        
        elif mode == "gen":
            img_embeds = out.image_embs
            images = []

            for img_emb in img_embeds:
                gen_image = pipe(image_embeds=img_emb.squeeze(1),
                            num_inference_steps=25,
                        ).images[0]
                images.append(gen_image)
            
            for i, image in enumerate(images):
                image = image.resize((256, 256), Image.LANCZOS)
                if not os.path.exists(f"plots/probes_task/{name}/gen/layer_{layers[i]}"):
                    os.makedirs(f"plots/probes_task/{name}/gen/layer_{layers[i]}", exist_ok=True)
                save_path = os.path.join(f"plots/probes_task/{name}/gen/layer_{layers[i]}", fname.split("/")[-1])
                image.save(save_path)

        elif mode == "depth":
            depth_preds = out.depth_preds

            for i, depth_pred in enumerate(depth_preds):
                if not os.path.exists(f"plots/probes_task/{name}/depth/layer_{layers[i]}"):
                    os.makedirs(f"plots/probes_task/{name}/depth/layer_{layers[i]}", exist_ok=True)
                depth = depth_pred.squeeze(0).cpu().numpy() * 255.0
                depth = depth.astype(np.uint8)
                depth = Image.fromarray(depth)
                save_path = os.path.join(f"plots/probes_task/{name}/depth/layer_{layers[i]}", fname.split("/")[-1])
                depth.save(save_path)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="/mnt/projects4jw/jiteshjain_sherlock/llava-v1.5-7b")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--json-file", type=str, default="/mnt/projects4jw/jiteshjain_sherlock/datasets/coco/annotations/captions_val2017.json")
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--max-new-tokens", type=int, default=10)
    parser.add_argument("--load-8bit", action="store_true")
    parser.add_argument("--load-4bit", action="store_true")
    parser.add_argument("--mode", type=str, default="gen")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    args = parser.parse_args()
    predict(args)