File size: 4,624 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import csv
import hashlib
import json
import os
import os.path as osp
import pickle
import time

import numpy as np
import pandas as pd


class NumpyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
                            np.int16, np.int32, np.int64, np.uint8,
                            np.uint16, np.uint32, np.uint64)):
            return int(obj)
        elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
            return float(obj)
        elif isinstance(obj, (np.complex_, np.complex64, np.complex128)):
            return {'real': obj.real, 'imag': obj.imag}
        elif isinstance(obj, (np.ndarray,)):
            return obj.tolist()
        elif isinstance(obj, (np.bool_)):
            return bool(obj)
        elif isinstance(obj, (np.void)): 
            return None
        return json.JSONEncoder.default(self, obj)

# LOAD & DUMP
def dump(data, f, **kwargs):
    def dump_pkl(data, pth, **kwargs):
        pickle.dump(data, open(pth, 'wb'))

    def dump_json(data, pth, **kwargs):
        json.dump(data, open(pth, 'w'), indent=4, ensure_ascii=False, cls=NumpyEncoder)

    def dump_jsonl(data, f, **kwargs):
        lines = [json.dumps(x, ensure_ascii=False, cls=NumpyEncoder) for x in data]
        with open(f, 'w', encoding='utf8') as fout:
            fout.write('\n'.join(lines))

    def dump_xlsx(data, f, **kwargs):
        data.to_excel(f, index=False, engine='xlsxwriter')

    def dump_csv(data, f, quoting=csv.QUOTE_ALL):
        data.to_csv(f, index=False, encoding='utf-8', quoting=quoting)

    def dump_tsv(data, f, quoting=csv.QUOTE_ALL):
        data.to_csv(f, sep='\t', index=False, encoding='utf-8', quoting=quoting)

    handlers = dict(pkl=dump_pkl, json=dump_json, jsonl=dump_jsonl, xlsx=dump_xlsx, csv=dump_csv, tsv=dump_tsv)
    suffix = f.split('.')[-1]
    return handlers[suffix](data, f, **kwargs)

def load(f):
    def load_pkl(pth):
        return pickle.load(open(pth, 'rb'))

    def load_json(pth):
        return json.load(open(pth, 'r', encoding='utf-8'))

    def load_jsonl(f):
        lines = open(f, encoding='utf-8').readlines()
        lines = [x.strip() for x in lines]
        if lines[-1] == '':
            lines = lines[:-1]
        data = [json.loads(x) for x in lines]
        return data

    def load_xlsx(f):
        return pd.read_excel(f)

    def load_csv(f):
        return pd.read_csv(f)

    def load_tsv(f):
        return pd.read_csv(f, sep='\t')

    handlers = dict(pkl=load_pkl, json=load_json, jsonl=load_jsonl, xlsx=load_xlsx, csv=load_csv, tsv=load_tsv)
    suffix = f.split('.')[-1]
    return handlers[suffix](f) 

def download_file(url, filename=None):
    import urllib.request

    from tqdm import tqdm

    class DownloadProgressBar(tqdm):
        def update_to(self, b=1, bsize=1, tsize=None):
            if tsize is not None:
                self.total = tsize
            self.update(b * bsize - self.n)
        
    if filename is None:
        filename = url.split('/')[-1]

    with DownloadProgressBar(unit='B', unit_scale=True,
                             miniters=1, desc=url.split('/')[-1]) as t:
        urllib.request.urlretrieve(url, filename=filename, reporthook=t.update_to)
    return filename

def ls(dirname='.', match='', mode='all', level=1):
    if dirname == '.':
        ans = os.listdir(dirname)
    else:
        ans = [osp.join(dirname, x) for x in os.listdir(dirname)]
    assert mode in ['all', 'dir', 'file']
    assert level >= 1 and isinstance(level, int)
    if level == 1:
        ans = [x for x in ans if match in x]
        if mode == 'dir':
            ans = [x for x in ans if osp.isdir(x)]
        elif mode == 'file':
            ans = [x for x in ans if not osp.isdir(x)]
    else:
        ans = [x for x in ans if osp.isdir(x)]
        res = []
        for d in ans:
            res.extend(ls(d, match=match, mode=mode, level=level-1))
        ans = res
    return ans

def mrlines(fname, sp='\n'):
    f = open(fname).read().split(sp)
    while f != [] and f[-1] == '':
        f = f[:-1]
    return f

def mwlines(lines, fname):
    with open(fname, 'w') as fout:
        fout.write('\n'.join(lines))

def md5(file_pth):
    with open(file_pth, 'rb') as f:
        hash = hashlib.new('md5')
        for chunk in iter(lambda: f.read(2**20), b''):
            hash.update(chunk)
    return str(hash.hexdigest())

def last_modified(pth):
    stamp = osp.getmtime(pth)
    m_ti = time.ctime(stamp)
    t_obj = time.strptime(m_ti)
    t = time.strftime('%Y%m%d%H%M%S', t_obj)[2:]
    return t