Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,625 Bytes
9fa3d89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from ola_vlm.conversation import conv_templates, SeparatorStyle
from ola_vlm.model.builder import load_pretrained_model
from ola_vlm.utils import disable_torch_init
from ola_vlm.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from torch.utils.data import Dataset, DataLoader
from datasets import load_dataset
from PIL import Image
import math
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def prepare_MMStar(path):
os.makedirs(f"{path}/images", exist_ok=True)
dataset = load_dataset(path, "val")
dataset = dataset["val"]
data = []
for i in range(len(dataset)):
if not os.path.exists(f"{path}/images/{i}.jpeg"):
dataset[i]["image"].save(f"{path}/images/{i}.jpeg")
prompt = dataset[i]["question"] + "\n"
prompt += "Answer with the option's letter from the given choices directly, such as answer letter 'A' only. \n"
d = {
"image": f"{path}/images/{i}.jpeg",
"question": prompt,
"answer": dataset[i]["answer"],
"category": dataset[i]["category"],
"l2_category": dataset[i]["l2_category"]
}
data.append(d)
return data
# Custom dataset class
class CustomDataset(Dataset):
def __init__(self, data, tokenizer, image_processor, model_config):
self.questions = data
self.tokenizer = tokenizer
self.image_processor = image_processor
self.model_config = model_config
def __getitem__(self, index):
d = self.questions[index]
qs = d["question"]
image_file = d["image"]
ans = d["answer"]
if self.model_config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
image = Image.open(image_file).convert('RGB')
image_tensor = process_images([image], self.image_processor, self.model_config)[0]
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
return input_ids, image_tensor, image.size, ans, d["category"], d["l2_category"]
def __len__(self):
return len(self.questions)
def collate_fn(batch):
input_ids, image_tensors, image_sizes, answers, cats, cats_l2 = zip(*batch)
input_ids = torch.stack(input_ids, dim=0)
image_tensors = torch.stack(image_tensors, dim=0)
return input_ids, image_tensors, image_sizes, answers, cats, cats_l2
# DataLoader
def create_data_loader(questions, tokenizer, image_processor, model_config, batch_size=1, num_workers=4):
assert batch_size == 1, "batch_size must be 1"
dataset = CustomDataset(questions, tokenizer, image_processor, model_config)
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn)
return data_loader
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
questions = prepare_MMStar(args.path)
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
args.conv_mode = args.conv_mode + '_mmtag'
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
data_loader = create_data_loader(questions, tokenizer, image_processor, model.config)
for (input_ids, image_tensor, image_sizes, answer, cat, cat_l2), line in tqdm(zip(data_loader, questions), total=len(questions)):
input_ids = input_ids.to(device='cuda', non_blocking=True)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
image_sizes=image_sizes,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=args.max_new_tokens,
use_cache=True)
if not isinstance(output_ids, torch.Tensor):
output_ids = output_ids.sequences
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
ans_file.write(json.dumps({"prediction": outputs,
"answer": answer[0],
"question": line,
"category": cat[0],
"l2_category": cat_l2[0]}) + "\n")
# ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--path", type=str, default="MMStar")
parser.add_argument("--answers-file", type=str, default="mmstar_answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_phi_3")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=128)
args = parser.parse_args()
eval_model(args)
|