File size: 33,129 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from abc import ABC, abstractmethod

import math
import re
import time
import torch
import torch.nn as nn
from ola_vlm.model.llava_one.multimodal_encoder.builder import build_vision_tower
from ola_vlm.model.llava_one.multimodal_resampler.builder import build_vision_resampler
from ola_vlm.model.llava_one.multimodal_projector.builder import build_vision_projector

from ola_vlm.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN

from ola_vlm.mm_utils import get_anyres_image_grid_shape
# from ola_vlm.utils import rank0_print
import random


class LlavaMetaModel:

    def __init__(self, config):
        super(LlavaMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            delay_load = getattr(config, "delay_load", False)
            self.vision_tower = build_vision_tower(config, delay_load=delay_load)
            self.vision_resampler = build_vision_resampler(config, vision_tower=self.vision_tower)
            self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config)

            if "unpad" in getattr(config, "mm_patch_merge_type", ""):
                self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def initialize_vision_modules(self, model_args, fsdp=None):
        vision_tower = model_args.vision_tower
        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
        mm_patch_merge_type = model_args.mm_patch_merge_type

        self.config.mm_vision_tower = vision_tower
        self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "")

        if self.get_vision_tower() is None:
            vision_tower = build_vision_tower(model_args)
            vision_resampler = build_vision_resampler(model_args, vision_tower=vision_tower)
            for k, v in vision_resampler.config.items():
                setattr(self.config, k, v)

            if fsdp is not None and len(fsdp) > 0:
                self.vision_tower = [vision_tower]
                self.vision_resampler = [vision_resampler]
            else:
                self.vision_tower = vision_tower
                self.vision_resampler = vision_resampler
        else:
            if fsdp is not None and len(fsdp) > 0:
                vision_resampler = self.vision_resampler[0]
                vision_tower = self.vision_tower[0]
            else:
                vision_resampler = self.vision_resampler
                vision_tower = self.vision_tower
            vision_tower.load_model()

            # In case it is frozen by LoRA
            for p in self.vision_resampler.parameters():
                p.requires_grad = True

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, "mm_projector_type", "linear")
        self.config.mm_hidden_size = getattr(vision_resampler, "hidden_size", vision_tower.hidden_size)
        self.config.mm_vision_select_layer = mm_vision_select_layer
        self.config.mm_vision_select_feature = mm_vision_select_feature
        self.config.mm_patch_merge_type = mm_patch_merge_type

        
        if not hasattr(self.config, 'add_faster_video'):
            if model_args.add_faster_video:
                embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
                self.faster_token = nn.Parameter(
                    torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
                )

        if getattr(self, "mm_projector", None) is None:
            self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config)

            if "unpad" in mm_patch_merge_type:
                embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
                self.image_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std)
        else:
            # In case it is frozen by LoRA
            for p in self.mm_projector.parameters():
                p.requires_grad = True

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")

            def get_w(weights, keyword):
                return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}

            incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))
            # rank0_print(f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
            incompatible_keys = self.vision_resampler.load_state_dict(get_w(mm_projector_weights, "vision_resampler"), strict=False)
            # rank0_print(f"Loaded vision resampler weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")


def unpad_image(tensor, original_size):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
    tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
    original_size (tuple): The original size of the image (height, width).

    Returns:
    torch.Tensor: The unpadded image tensor.
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    # Compute aspect ratios
    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    # Determine padding size and direction
    if original_aspect_ratio > current_aspect_ratio:
        # Padding was added to the height
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding : current_height - padding, :]
    else:
        # Padding was added to the width
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding : current_width - padding]

    return unpadded_tensor


class LlavaMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def get_2dPool(self, image_feature, stride=2):
        height = width = self.get_vision_tower().num_patches_per_side
        num_frames, num_tokens, num_dim = image_feature.shape
        image_feature = image_feature.view(num_frames, height, width, -1)
        image_feature = image_feature.permute(0, 3, 1, 2).contiguous()
        # image_feature = nn.functional.max_pool2d(image_feature, self.config.mm_spatial_pool_stride)
        if self.config.mm_spatial_pool_mode == "average":
            image_feature = nn.functional.avg_pool2d(image_feature, stride)
        elif self.config.mm_spatial_pool_mode == "max":
            image_feature = nn.functional.max_pool2d(image_feature, stride)
        elif self.config.mm_spatial_pool_mode == "bilinear":
            height, width = image_feature.shape[2:]
            scaled_shape = [math.ceil(height / stride), math.ceil(width / stride)]
            image_feature = nn.functional.interpolate(image_feature, size=scaled_shape, mode='bilinear')

        else:
            raise ValueError(f"Unexpected mm_spatial_pool_mode: {self.config.mm_spatial_pool_mode}")
        image_feature = image_feature.permute(0, 2, 3, 1)
        image_feature = image_feature.view(num_frames, -1, num_dim)
        return image_feature

    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        # image_features = self.get_model().vision_resampler(image_features, images=images)
        image_features = self.get_model().mm_projector(image_features)
        return image_features
    
    def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
        videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images)
        per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0)  # tuple, (dim_1, 576, 4096)
        all_videos_or_images_features = []
        all_faster_video_features = []
        cur_mm_spatial_pool_stride = self.config.mm_spatial_pool_stride

        for idx, feat in enumerate(per_videos_or_images_features):
            
            feat = self.get_model().mm_projector(feat)
            faster_video_feature = 0
            slower_img_feat = 0
            if idx in video_idx_in_batch and cur_mm_spatial_pool_stride > 1:
                slower_img_feat = self.get_2dPool(feat,cur_mm_spatial_pool_stride)
                if self.config.add_faster_video:
                    cur_mm_spatial_pool_stride = cur_mm_spatial_pool_stride * 2
                    faster_video_feature = self.get_2dPool(feat,cur_mm_spatial_pool_stride)
            if slower_img_feat != 0:
                all_videos_or_images_features.append(slower_img_feat)
            else:
                all_videos_or_images_features.append(feat)
            all_faster_video_features.append(faster_video_feature)
        return all_videos_or_images_features,all_faster_video_features

    def add_token_per_grid(self, image_feature):
        resize_h = int(math.sqrt(image_feature.shape[1]))
        num_frames = image_feature.shape[0]
        feature_dim = image_feature.shape[-1]

        image_feature = image_feature.view(num_frames, 1, resize_h, resize_h, -1)
        image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
        image_feature = image_feature.flatten(1, 2).flatten(2, 3)
        image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
        if getattr(self.config, "add_faster_video", False):
            # import pdb; pdb.set_trace()
            # (3584, 832, 14) -> (3584, 64, 13, 14)
            image_feature = image_feature.view(feature_dim, num_frames,resize_h, -1)
            #  (3584, 64, 13, 14) -> (64, 13, 14, 3584)
            image_feature = image_feature.permute(1, 2, 3, 0).contiguous()
            # (64, 13, 14, 3584) -> (64, 13*14, 3584)
            image_feature = image_feature.flatten(1, 2)
            # import pdb; pdb.set_trace()
            return image_feature
        # import pdb; pdb.set_trace()
        image_feature = image_feature.flatten(1, 2).transpose(0, 1)
        return image_feature

    def add_token_per_frame(self, image_feature):
        image_feature = image_feature.permute(2, 0, 1).contiguous()
        image_feature =  torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
        image_feature = image_feature.permute(1, 2, 0).contiguous()
        return image_feature

    def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes=None):
        vision_tower = self.get_vision_tower()
        # rank_print(modalities)
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels, None

        modalities = ["image"] * len(images)
        if isinstance(modalities, str):
            modalities = [modalities]

        # import pdb; pdb.set_trace()
        if type(images) is list or images.ndim == 5:
            if type(images) is list:
                images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]

            video_idx_in_batch = []
            for _ in range(len(modalities)):
                if modalities[_] == "video":
                    video_idx_in_batch.append(_)

            images_list = []
            for image in images:
                if image.ndim == 4:
                    images_list.append(image)
                else:
                    images_list.append(image.unsqueeze(0))

            concat_images = torch.cat([image for image in images_list], dim=0)
            split_sizes = [image.shape[0] for image in images_list]
            encoded_image_features = self.encode_images(concat_images)
            # image_features,all_faster_video_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)

            # This is a list, each element is [num_images, patch * patch, dim]
            # rank_print(f"Concat images : {concat_images.shape}")
            encoded_image_features = torch.split(encoded_image_features, split_sizes)
            image_features = []
            for idx, image_feat in enumerate(encoded_image_features):
                if idx in video_idx_in_batch:
                    image_features.append(self.get_2dPool(image_feat))
                else:
                    image_features.append(image_feat)
            # image_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)
            # rank_print(f"Encoded image feats : {[x.shape for x in image_features]}")
            # image_features = torch.split(image_features, split_sizes, dim=0)
            mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
            image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
            mm_newline_position = getattr(self.config, "mm_newline_position", "one_token")

            if mm_patch_merge_type == "flat":
                image_features = [x.flatten(0, 1) for x in image_features]

            elif mm_patch_merge_type.startswith("spatial"):
                new_image_features = []
                for image_idx, image_feature in enumerate(image_features):
                    # FIXME: now assume the image is square, and split to 2x2 patches
                    # num_patches = h * w, where h = w = sqrt(num_patches)
                    # currently image_feature is a tensor of shape (4, num_patches, hidden_size)
                    # we want to first unflatten it to (2, 2, h, w, hidden_size)
                    # rank0_print("At least we are reaching here")
                    # import pdb; pdb.set_trace()
                    if image_idx in video_idx_in_batch:  # video operations
                        # rank0_print("Video")
                        if mm_newline_position == "grid":
                            # Grid-wise
                            image_feature = self.add_token_per_grid(image_feature)
                            if getattr(self.config, "add_faster_video", False):
                                faster_video_feature = self.add_token_per_grid(all_faster_video_features[image_idx])
                                # Add a token for each frame
                                concat_slow_fater_token = []
                                # import pdb; pdb.set_trace()
                                for _ in range(image_feature.shape[0]):
                                    if _ % self.config.faster_token_stride == 0:
                                        concat_slow_fater_token.append(torch.cat((image_feature[_], self.model.faster_token[None].to(image_feature.device)), dim=0))
                                    else:
                                        concat_slow_fater_token.append(torch.cat((faster_video_feature[_], self.model.faster_token[None].to(image_feature.device)), dim=0))
                                # import pdb; pdb.set_trace()
                                image_feature = torch.cat(concat_slow_fater_token)

                                # print("!!!!!!!!!!!!")
                        
                            new_image_features.append(image_feature)
                        elif mm_newline_position == "frame":
                            # Frame-wise
                            image_feature = self.add_token_per_frame(image_feature)

                            new_image_features.append(image_feature.flatten(0, 1))
                            
                        elif mm_newline_position == "one_token":
                            # one-token
                            image_feature = image_feature.flatten(0, 1)
                            if 'unpad' in mm_patch_merge_type:
                                image_feature = torch.cat((
                                    image_feature,
                                    self.model.image_newline[None].to(image_feature.device)
                                ), dim=0)
                            new_image_features.append(image_feature)      
                        elif mm_newline_position == "no_token":
                            new_image_features.append(image_feature.flatten(0, 1))
                        else:
                            raise ValueError(f"Unexpected mm_newline_position: {mm_newline_position}")
                    elif image_feature.shape[0] > 1:  # multi patches and multi images operations
                        # rank0_print("Single-images")
                        base_image_feature = image_feature[0]
                        image_feature = image_feature[1:]
                        height = width = self.get_vision_tower().num_patches_per_side
                        assert height * width == base_image_feature.shape[0]

                        if "anyres_max" in image_aspect_ratio:
                            matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio)
                            if matched_anyres_max_num_patches:
                                max_num_patches = int(matched_anyres_max_num_patches.group(1))

                        if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
                            if hasattr(self.get_vision_tower(), "image_size"):
                                vision_tower_image_size = self.get_vision_tower().image_size
                            else:
                                raise ValueError("vision_tower_image_size is not found in the vision tower.")
                            try:
                                num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size)
                            except Exception as e:
                                print(f"Error: {e}")
                                num_patch_width, num_patch_height = 2, 2
                            image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
                        else:
                            image_feature = image_feature.view(2, 2, height, width, -1)

                        if "maxpool2x2" in mm_patch_merge_type:
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = nn.functional.max_pool2d(image_feature, 2)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches:
                            unit = image_feature.shape[2]
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = unpad_image(image_feature, image_sizes[image_idx])
                            c, h, w = image_feature.shape
                            times = math.sqrt(h * w / (max_num_patches * unit**2))
                            if times > 1.1:
                                image_feature = image_feature[None]
                                image_feature = nn.functional.interpolate(image_feature, [int(h // times), int(w // times)], mode="bilinear")[0]
                            image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        elif "unpad" in mm_patch_merge_type:
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = unpad_image(image_feature, image_sizes[image_idx])
                            image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        else:
                            image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
                            image_feature = image_feature.flatten(0, 3)
                        if "nobase" in mm_patch_merge_type:
                            pass
                        else:
                            image_feature = torch.cat((base_image_feature, image_feature), dim=0)
                        new_image_features.append(image_feature)
                    else:  # single image operations
                        image_feature = image_feature[0]
                        if "unpad" in mm_patch_merge_type:
                            image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0)

                        new_image_features.append(image_feature)
                image_features = new_image_features
            else:
                raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
        else:
            image_features = self.encode_images(images)

        # TODO: image start / end is not implemented here to support pretraining.
        if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False):
            raise NotImplementedError
        # rank_print(f"Total images : {len(image_features)}")

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- FIXME
        _input_ids = input_ids
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0
        # rank_print("Inserting Images embedding")
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            # rank0_print(num_images)
            if num_images == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue

            image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
            cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []

            for i in range(num_images + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_images:
                    try:
                        cur_image_features = image_features[cur_image_idx]
                    except IndexError:
                        cur_image_features = image_features[cur_image_idx - 1]
                    cur_image_idx += 1
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))

            cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]

            # import pdb; pdb.set_trace()
            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
        # rank_print("Finishing Inserting")

        new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
        new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
        # TODO: Hard code for control loss spike
        # if tokenizer_model_max_length is not None:
        #     new_input_embeds = [x[:4096] if modality != "video" else x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
        #     new_labels = [x[:4096] if modality != "video" else x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
        # rank0_print("Prepare pos id")

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, "tokenizer_padding_side", "right") == "left":
                new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
            else:
                new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
        # rank0_print("tokenizer padding")

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None
        if getattr(self.config, "use_pos_skipping", False) and self.training:
            position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device)
            split_position = random.randint(0, new_input_embeds.size(1))
            left_add = random.randint(0, self.config.pos_skipping_range)
            right_add = random.randint(left_add, self.config.pos_skipping_range)
            position_ids[:, :split_position] += left_add
            position_ids[:, split_position:] += right_add
        # import pdb; pdb.set_trace()
        # rank0_print("Finish preparing")
        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, None

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location="cpu")
                embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False