import cv2 import torch import torch.nn as nn import torch.nn.functional as F from ola_vlm.model.multimodal_projector.resampler import Resampler, TaskTokenResampler def _make_scratch(in_shape, out_shape, groups=1, expand=False): scratch = nn.Module() out_shape1 = out_shape out_shape2 = out_shape out_shape3 = out_shape if len(in_shape) >= 4: out_shape4 = out_shape if expand: out_shape1 = out_shape out_shape2 = out_shape * 2 out_shape3 = out_shape * 4 if len(in_shape) >= 4: out_shape4 = out_shape * 8 scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups) scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups) scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups) if len(in_shape) >= 4: scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups) return scratch class ResidualConvUnit(nn.Module): """Residual convolution module. """ def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups=1 self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) if self.bn == True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional() def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn == True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn == True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x) class FeatureFusionBlock(nn.Module): """Feature fusion block. """ def __init__( self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None ): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups=1 self.expand = expand out_features = features if self.expand == True: out_features = features // 2 self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) self.resConfUnit1 = ResidualConvUnit(features, activation, bn) self.resConfUnit2 = ResidualConvUnit(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional() self.size=size def forward(self, *xs, size=None): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: res = self.resConfUnit1(xs[1]) output = self.skip_add.add(output, res) output = self.resConfUnit2(output) if (size is None) and (self.size is None): modifier = {"scale_factor": 2} elif size is None: modifier = {"size": self.size} else: modifier = {"size": size} output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners) output = self.out_conv(output) return output def _make_fusion_block(features, use_bn, size=None): return FeatureFusionBlock( features, nn.ReLU(False), deconv=False, bn=use_bn, expand=False, align_corners=True, size=size, ) class ConvBlock(nn.Module): def __init__(self, in_feature, out_feature): super().__init__() self.conv_block = nn.Sequential( nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(out_feature), nn.ReLU(True) ) def forward(self, x): return self.conv_block(x) class DPTHead(nn.Module): def __init__( self, in_channels, features=256, use_bn=False, out_channels=[256, 512, 1024, 1024], use_clstoken=False ): super(DPTHead, self).__init__() self.use_clstoken = use_clstoken self.projects = nn.ModuleList([ nn.Conv2d( in_channels=in_channels, out_channels=out_channel, kernel_size=1, stride=1, padding=0, ) for out_channel in out_channels ]) self.resize_layers = nn.ModuleList([ nn.ConvTranspose2d( in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0), nn.ConvTranspose2d( in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0), nn.Identity(), nn.Conv2d( in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1) ]) if use_clstoken: self.readout_projects = nn.ModuleList() for _ in range(len(self.projects)): self.readout_projects.append( nn.Sequential( nn.Linear(2 * in_channels, in_channels), nn.GELU())) self.scratch = _make_scratch( out_channels, features, groups=1, expand=False, ) self.scratch.stem_transpose = None self.scratch.refinenet1 = _make_fusion_block(features, use_bn) self.scratch.refinenet2 = _make_fusion_block(features, use_bn) self.scratch.refinenet3 = _make_fusion_block(features, use_bn) self.scratch.refinenet4 = _make_fusion_block(features, use_bn) head_features_1 = features head_features_2 = 32 self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1) self.scratch.output_conv2 = nn.Sequential( nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True), nn.Identity(), ) def forward(self, out_features, patch_h, patch_w): out = [] for i, x in enumerate(out_features): if self.use_clstoken: x, cls_token = x[0], x[1] readout = cls_token.unsqueeze(1).expand_as(x) x = self.readout_projects[i](torch.cat((x, readout), -1)) else: x = x[0] x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) x = self.projects[i](x) x = self.resize_layers[i](x) out.append(x) layer_1, layer_2, layer_3, layer_4 = out layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv1(path_1) out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True) out = self.scratch.output_conv2(out) return out class DAv2_Head(nn.Module): def __init__( self, encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024], use_bn=False, use_clstoken=False ): super(DAv2_Head, self).__init__() self.embd_dims = { 'vits': 1024, 'vitb': 1024, 'vitl': 1024, 'vitg': 1024, } self.depth_head = DPTHead(self.embd_dims[encoder], features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken) def forward(self, features): patch_h, patch_w = 336 // 14, 336 // 14 depth = self.depth_head(features, patch_h, patch_w) depth = F.relu(depth) return depth.squeeze(1) @torch.no_grad() def infer_feats(self, feats, image_size=(336, 336)): h, w = image_size depth = self.forward(feats) depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0] return depth.cpu().numpy() def build_mlp(in_hidden_size, hidden_size): modules = [nn.Linear(in_hidden_size, hidden_size)] modules.append(nn.ReLU()) modules.append(nn.Linear(hidden_size, hidden_size)) return nn.Sequential(*modules) def build_expand_mlp(in_hidden_size, hidden_size, out_size): modules = [nn.Linear(in_hidden_size, hidden_size)] modules.append(nn.ReLU()) modules.append(nn.Linear(hidden_size, hidden_size)) modules.append(nn.ReLU()) modules.append(nn.Linear(hidden_size, out_size)) return nn.Sequential(*modules) class DepthProbeHead(nn.Module): def __init__( self, llm_hidden_size=4096, proj_config=None, ): super(DepthProbeHead, self).__init__() self.linear_1 = build_mlp(llm_hidden_size, proj_config["output_dim"]) self.linear_2 = build_mlp(llm_hidden_size, proj_config["output_dim"]) self.linear_3 = build_mlp(llm_hidden_size, proj_config["output_dim"]) self.linear_4 = build_mlp(llm_hidden_size, proj_config["output_dim"]) # self._init_weights() # def _init_weights(self): # for m in self.modules(): # if isinstance(m, nn.Linear): # nn.init.xavier_uniform_(m.weight) # if m.bias is not None: # nn.init.constant_(m.bias, 0) def forward(self, llm_feats): features = [(self.linear_1(llm_feats), None), (self.linear_1(llm_feats), None), (self.linear_2(llm_feats), None), (self.linear_3(llm_feats), None) ] return features class DepthHead(nn.Module): def __init__( self, llm_hidden_size=4096, proj_config=None, use_intermediate_depth=False, ): super(DepthHead, self).__init__() self.projector = Resampler( dim=proj_config["output_dim"], depth=proj_config["depth"], dim_head=proj_config["dim_head"], heads=proj_config["num_heads"], num_queries=proj_config["num_tokens"], embedding_dim=llm_hidden_size, output_dim=proj_config["output_dim"], ff_mult=proj_config["ff_mult"], ) self.use_intermediate_depth = use_intermediate_depth if self.use_intermediate_depth: self.linear_1 = build_mlp(proj_config["output_dim"], proj_config["output_dim"]) self.linear_2 = build_mlp(proj_config["output_dim"], proj_config["output_dim"]) self.linear_3 = build_mlp(proj_config["output_dim"], proj_config["output_dim"]) def forward(self, llm_feats): visual_feats = self.projector(llm_feats) features = [] if self.use_intermediate_depth: features.append((self.linear_1(visual_feats), None)) features.append((self.linear_2(visual_feats), None)) features.append((self.linear_3(visual_feats), None)) features.append((visual_feats, None)) return features class TaskTokenDepthHead(nn.Module): def __init__( self, proj_config=None, llm_hidden_size=4096, use_intermediate_depth=False, ): super(TaskTokenDepthHead, self).__init__() self.projector = TaskTokenResampler( dim=llm_hidden_size, depth=proj_config["depth"], dim_head=proj_config["dim_head"], heads=proj_config["num_heads"], num_queries=proj_config["num_tokens"], embedding_dim=llm_hidden_size, output_dim=proj_config["output_dim"], ff_mult=proj_config["ff_mult"], ) self.use_intermediate_depth = use_intermediate_depth if self.use_intermediate_depth: self.linear_1 = build_mlp(proj_config["output_dim"], proj_config["output_dim"]) self.linear_2 = build_mlp(proj_config["output_dim"], proj_config["output_dim"]) self.linear_3 = build_mlp(proj_config["output_dim"], proj_config["output_dim"]) def forward(self, llm_feats, latents): visual_feats = self.projector(llm_feats, latents) features = [] if self.use_intermediate_depth: features.append((self.linear_1(visual_feats), None)) features.append((self.linear_2(visual_feats), None)) features.append((self.linear_3(visual_feats), None)) features.append((visual_feats, None)) return features