import gradio as gr import spaces import torch import numpy as np from ola_vlm.constants import DEFAULT_IMAGE_TOKEN from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from ola_vlm.conversation import conv_templates, SeparatorStyle from ola_vlm.model.builder import load_pretrained_model from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images from diffusers import StableUnCLIPImg2ImgPipeline from diffusers import DPMSolverMultistepScheduler from transformers import OneFormerProcessor from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead from ola_vlm.ola_utils import visualize_oneformer_masks_on_image, oneformer_prepare_panoptic_instance_prediction import matplotlib from PIL import Image, ImageDraw, ImageFont import argparse import math from transformers import TextIteratorStreamer from threading import Thread def make_grid(pil_images, layer_indices=None): new_images = [] new_captions = [] # Resize images and prepare captions for i, pil_image in enumerate(pil_images): pil_image = pil_image.resize((256, 256)) new_images.append(pil_image) if layer_indices is not None: new_captions.append(f"Layer: {layer_indices[i]}") else: new_captions.append(f"Layer: {i+1}") images = new_images captions = new_captions width, height = images[0].size font_size = 18 # Calculate the number of rows and columns for the grid images_per_row = min(len(images), 4) # Max 4 images per row row_count = math.ceil(len(images) / images_per_row) total_width = width * images_per_row total_height = height * row_count # Create a new blank image new_image = Image.new("RGB", (total_width, total_height), "white") draw = ImageDraw.Draw(new_image) # Load a default font try: font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size) except: font = ImageFont.load_default() # Place images and captions in the grid for i, (image, caption) in enumerate(zip(images, captions)): row = i // images_per_row col = i % images_per_row x_offset = col * width y_offset = row * height # Paste the image new_image.paste(image, (x_offset, y_offset)) # Calculate text and background positions text_width, text_height = draw.textsize(caption, font=font) text_position = (x_offset + 10, y_offset + height - text_height - 10) background_position = ( text_position[0] - 5, text_position[1] - 5, text_position[0] + text_width + 5, text_position[1] + text_height + 5, ) # Draw background rectangle and text draw.rectangle(background_position, fill="white", outline="black") draw.text(text_position, caption, fill="black", font=font) return new_image def reload_from_ckpt(model_path, model, cache_dir=None): import os from safetensors import safe_open from huggingface_hub import hf_hub_download, list_repo_files state_dict = {} # Check if the path is a local directory or HF Hub model if os.path.isdir(model_path): # Local directory: Load safetensors files safetensors_paths = [os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.safetensors')] else: # HF Hub: Get list of safetensors files and download them repo_files = list_repo_files(model_path) safetensors_paths = [ hf_hub_download(model_path, file_name, cache_dir=cache_dir) for file_name in repo_files if file_name.endswith('.safetensors') ] # Load safetensors files into the state_dict for path in safetensors_paths: with safe_open(path, framework="pt", device="cpu") as f: for key in f.keys(): state_dict[key] = f.get_tensor(key) # Load the state dict into the model model.load_state_dict(state_dict, strict=False) return model # os.environ['GRADIO_TEMP_DIR'] = './gradio_tmp' no_change_btn = gr.Button() enable_btn = gr.Button(interactive=True) disable_btn = gr.Button(interactive=False) argparser = argparse.ArgumentParser() argparser.add_argument("--server_name", default="0.0.0.0", type=str) argparser.add_argument("--port", default="6324", type=str) argparser.add_argument("--model-path", default="shi-labs/pretrain_dsg_OLA-VLM-CLIP-ViT-Llama3-8b", type=str) argparser.add_argument("--model-base", type=str, default=None) argparser.add_argument("--num-gpus", type=int, default=1) argparser.add_argument("--conv-mode", type=str, default="llava_llama_3") argparser.add_argument("--temperature", type=float, default=0.2) argparser.add_argument("--max-new-tokens", type=int, default=512) argparser.add_argument("--num_frames", type=int, default=16) argparser.add_argument("--load-8bit", action="store_true") argparser.add_argument("--load-4bit", action="store_true") argparser.add_argument("--debug", action="store_true") args = argparser.parse_args() model_path = args.model_path conv_mode = args.conv_mode filt_invalid="cut" model_name = get_model_name_from_path(args.model_path) tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit) model = reload_from_ckpt("shi-labs/OLA-VLM-CLIP-ViT-Llama3-8b", model) our_chatbot = None pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") oneformer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large") oneformer = OneFormerHead.from_pretrained("shi-labs/oneformer_coco_swin_large").to("cuda") gen_layer_indices = model.config.image_gen["img_layer_indices"].split("-") seg_layer_indices = model.config.image_seg["seg_layer_indices"].split("-") depth_layer_indices = model.config.image_depth["depth_layer_indices"].split("-") def clear_history(): state =conv_templates[conv_mode].copy() return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5 def add_text(state, imagebox, textbox, image_process_mode): if state is None: state = conv_templates[conv_mode].copy() if imagebox is not None: textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox image = Image.open(imagebox).convert('RGB') if imagebox is not None: textbox = (textbox, image, image_process_mode) state.append_message(state.roles[0], textbox) state.append_message(state.roles[1], None) yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) def get_gen_images(out): img_embeds = out.image_embs if len(img_embeds) == 0: return None images = [] for img_embed in img_embeds: gen_image = pipe(image_embeds=img_embed.squeeze(1), num_inference_steps=25, ).images[0] images.append(gen_image) grid_image = make_grid(images, gen_layer_indices) return grid_image def get_depth_images(out, org_size): depth_preds = out.depth_preds if len(depth_preds) == 0: return None depths = [] for i, depth_pred in enumerate(depth_preds): depth = (depth_pred - depth_pred.min()) / (depth_pred.max() - depth_pred.min()) * 255.0 depth = depth.squeeze(0).cpu().numpy() depth = depth.astype(np.uint8) cmap = matplotlib.colormaps.get_cmap('Spectral_r') depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8) depth = Image.fromarray(depth) depth = depth.resize(org_size) depths.append(depth) grid_image = make_grid(depths, depth_layer_indices) return grid_image def get_seg_images(out, image): seg_embs = out.seg_embs if len(seg_embs) == 0: return None seg_preds = [] inputs = oneformer_processor(image, ["semantic"], return_tensors="pt") inputs["pixel_values"] = inputs["pixel_values"].to(out.logits.device, out.logits.dtype) inputs["task_inputs"] = inputs["task_inputs"].to(out.logits.device, out.logits.dtype) backbone_features = oneformer.get_backbone_feats(**inputs) for i, seg_emb in enumerate(seg_embs): pred = oneformer.get_masks(**inputs, backbone_last_feature=seg_emb.float(), all_backbone_features=backbone_features) pred = oneformer_processor.post_process_panoptic_segmentation( pred, target_sizes=[image.size[::-1]] )[0] pred_msk, pred_cls = oneformer_prepare_panoptic_instance_prediction(**pred, oneformer=oneformer) pred = visualize_oneformer_masks_on_image(image, pred_msk, pred_cls) seg_preds.append(pred) grid_image = make_grid(seg_preds, seg_layer_indices) return grid_image def delete_text(state, image_process_mode): state.messages[-1][-1] = None prev_human_msg = state.messages[-2] if type(prev_human_msg[1]) in (tuple, list): prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) def regenerate(state, image_process_mode): state.messages[-1][-1] = None prev_human_msg = state.messages[-2] if type(prev_human_msg[1]) in (tuple, list): prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) state.skip_next = False return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 @spaces.GPU def get_interm_outs(state): prompt = state.get_prompt() images = state.get_images(return_pil=True) #prompt, image_args = process_image(prompt, images) if images is not None and len(images) > 0: if len(images) > 0: if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): raise ValueError("Number of images does not match number of tokens in prompt") #images = [load_image_from_base64(image) for image in images] image_sizes = [image.size for image in images] inp_images = process_images(images, image_processor, model.config) if type(inp_images) is list: inp_images = [image.to(model.device, dtype=torch.float16) for image in images] else: inp_images = inp_images.to(model.device, dtype=torch.float16) else: inp_images = None image_sizes = None image_args = {"images": inp_images, "image_sizes": image_sizes} else: inp_images = None image_args = {} input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) interm_outs = model.get_visual_interpretations( input_ids, **image_args ) depth_outs = get_depth_images(interm_outs, image_sizes[0]) seg_outs = get_seg_images(interm_outs, images[0]) gen_outs = get_gen_images(interm_outs) return depth_outs, seg_outs, gen_outs @spaces.GPU def generate(state, temperature, top_p, max_output_tokens): prompt = state.get_prompt() images = state.get_images(return_pil=True) #prompt, image_args = process_image(prompt, images) ori_prompt = prompt num_image_tokens = 0 if images is not None and len(images) > 0: if len(images) > 0: if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): raise ValueError("Number of images does not match number of tokens in prompt") #images = [load_image_from_base64(image) for image in images] image_sizes = [image.size for image in images] images = process_images(images, image_processor, model.config) if type(images) is list: images = [image.to(model.device, dtype=torch.float16) for image in images] else: images = images.to(model.device, dtype=torch.float16) else: images = None image_sizes = None image_args = {"images": images, "image_sizes": image_sizes} else: images = None image_args = {} max_context_length = getattr(model.config, 'max_position_embeddings', 2048) max_new_tokens = max_output_tokens do_sample = True if temperature > 0.001 else False stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2 input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens) if max_new_tokens < 1: return thread = Thread(target=model.generate, kwargs=dict( inputs=input_ids, do_sample=do_sample, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, streamer=streamer, use_cache=True, pad_token_id=tokenizer.eos_token_id, **image_args )) thread.start() generated_text = '' for new_text in streamer: generated_text += new_text if generated_text.endswith(stop_str): generated_text = generated_text[:-len(stop_str)] state.messages[-1][-1] = generated_text yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5 torch.cuda.empty_cache() txt = gr.Textbox( scale=4, show_label=False, placeholder="Enter text and press enter.", container=False, ) title = "

OLA-VLM: Optimizing Language Model Representations for Enhanced Visual Quality and Alignment

" description = "

Jitesh Jain    Zhengyuan Yang    Humphrey Shi*    Jianfeng Gao*    Jianwei Yang*

" \ + "

*Equal Advising

" \ + "

Project Page | Video | ArXiv | Github

" tos_markdown = (""" ### Terms of use By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. """) learn_more_markdown = (""" ### License The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. """) block_css = """ #buttons button { min-width: min(120px,100%); } """ textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False) with gr.Blocks(title="OLA-VLM", theme=gr.themes.Default(), css=block_css) as demo: state = gr.State() gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(scale=4): imagebox = gr.Image(label="Input Image", type="filepath") image_process_mode = gr.Radio( ["Crop", "Resize", "Pad", "Default"], value="Default", label="Preprocess for non-square image", visible=False) # with gr.Accordion("Parameters", open=False) as parameter_row: with gr.Row(): temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) with gr.Column(scale=8): chatbot = gr.Chatbot( elem_id="chatbot", label="OLA-VLM", height=300, layout="panel", ) textbox.render() with gr.Row(elem_id="buttons") as button_row: upvote_btn = gr.Button(value="👍 Upvote", interactive=False, visible=False) downvote_btn = gr.Button(value="👎 Downvote", interactive=False, visible=False) flag_btn = gr.Button(value="⚠ī¸ Flag", interactive=False, visible=False) #stop_btn = gr.Button(value="⏚ī¸ Stop Generation", interactive=False) regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) clear_btn = gr.Button(value="🗑ī¸ Clear", interactive=False) submit_btn = gr.Button(value="Send", variant="primary") with gr.Accordion("Representations from selected layers of the LLM (expects only a single image input)", open=False) as interm_out: inter_vis_btn = gr.Button(value="✨ Visualize") with gr.Row(): depth_box = gr.Image(label="depth", type="pil", visible=True) seg_box = gr.Image(label="seg", type="pil", visible=True) gen_box = gr.Image(label="gen", type="pil", visible=True) gr.Examples(examples=[ [f"assets/cars.jpg", "Which car is in front: the blue or the brown one?"], [f"assets/pb.jpg", "Where is the bulding located with respect to the man?"], ], inputs=[imagebox, textbox], cache_examples=False) # gr.Markdown(tos_markdown) # gr.Markdown(learn_more_markdown) # url_params = gr.JSON(visible=False) # Register listeners btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] inter_vis_btn.click( get_interm_outs, [state], [depth_box, seg_box, gen_box], ) clear_btn.click( clear_history, None, [state, chatbot, textbox, imagebox, depth_box, gen_box, seg_box] + btn_list, queue=False ) regenerate_btn.click( delete_text, [state, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list, ).then( generate, [state, temperature, top_p, max_output_tokens], [state, chatbot, textbox, imagebox] + btn_list, ) textbox.submit( add_text, [state, imagebox, textbox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list, ).then( generate, [state, temperature, top_p, max_output_tokens], [state, chatbot, textbox, imagebox] + btn_list, ) submit_btn.click( add_text, [state, imagebox, textbox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list, ).then( generate, [state, temperature, top_p, max_output_tokens], [state, chatbot, textbox, imagebox] + btn_list, ) demo.queue( status_update_rate=10, api_open=False ).launch(share=False) demo.queue()