import csv import hashlib import json import os import os.path as osp import pickle import time import numpy as np import pandas as pd class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)): return int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): return float(obj) elif isinstance(obj, (np.complex_, np.complex64, np.complex128)): return {'real': obj.real, 'imag': obj.imag} elif isinstance(obj, (np.ndarray,)): return obj.tolist() elif isinstance(obj, (np.bool_)): return bool(obj) elif isinstance(obj, (np.void)): return None return json.JSONEncoder.default(self, obj) # LOAD & DUMP def dump(data, f, **kwargs): def dump_pkl(data, pth, **kwargs): pickle.dump(data, open(pth, 'wb')) def dump_json(data, pth, **kwargs): json.dump(data, open(pth, 'w'), indent=4, ensure_ascii=False, cls=NumpyEncoder) def dump_jsonl(data, f, **kwargs): lines = [json.dumps(x, ensure_ascii=False, cls=NumpyEncoder) for x in data] with open(f, 'w', encoding='utf8') as fout: fout.write('\n'.join(lines)) def dump_xlsx(data, f, **kwargs): data.to_excel(f, index=False, engine='xlsxwriter') def dump_csv(data, f, quoting=csv.QUOTE_ALL): data.to_csv(f, index=False, encoding='utf-8', quoting=quoting) def dump_tsv(data, f, quoting=csv.QUOTE_ALL): data.to_csv(f, sep='\t', index=False, encoding='utf-8', quoting=quoting) handlers = dict(pkl=dump_pkl, json=dump_json, jsonl=dump_jsonl, xlsx=dump_xlsx, csv=dump_csv, tsv=dump_tsv) suffix = f.split('.')[-1] return handlers[suffix](data, f, **kwargs) def load(f): def load_pkl(pth): return pickle.load(open(pth, 'rb')) def load_json(pth): return json.load(open(pth, 'r', encoding='utf-8')) def load_jsonl(f): lines = open(f, encoding='utf-8').readlines() lines = [x.strip() for x in lines] if lines[-1] == '': lines = lines[:-1] data = [json.loads(x) for x in lines] return data def load_xlsx(f): return pd.read_excel(f) def load_csv(f): return pd.read_csv(f) def load_tsv(f): return pd.read_csv(f, sep='\t') handlers = dict(pkl=load_pkl, json=load_json, jsonl=load_jsonl, xlsx=load_xlsx, csv=load_csv, tsv=load_tsv) suffix = f.split('.')[-1] return handlers[suffix](f) def download_file(url, filename=None): import urllib.request from tqdm import tqdm class DownloadProgressBar(tqdm): def update_to(self, b=1, bsize=1, tsize=None): if tsize is not None: self.total = tsize self.update(b * bsize - self.n) if filename is None: filename = url.split('/')[-1] with DownloadProgressBar(unit='B', unit_scale=True, miniters=1, desc=url.split('/')[-1]) as t: urllib.request.urlretrieve(url, filename=filename, reporthook=t.update_to) return filename def ls(dirname='.', match='', mode='all', level=1): if dirname == '.': ans = os.listdir(dirname) else: ans = [osp.join(dirname, x) for x in os.listdir(dirname)] assert mode in ['all', 'dir', 'file'] assert level >= 1 and isinstance(level, int) if level == 1: ans = [x for x in ans if match in x] if mode == 'dir': ans = [x for x in ans if osp.isdir(x)] elif mode == 'file': ans = [x for x in ans if not osp.isdir(x)] else: ans = [x for x in ans if osp.isdir(x)] res = [] for d in ans: res.extend(ls(d, match=match, mode=mode, level=level-1)) ans = res return ans def mrlines(fname, sp='\n'): f = open(fname).read().split(sp) while f != [] and f[-1] == '': f = f[:-1] return f def mwlines(lines, fname): with open(fname, 'w') as fout: fout.write('\n'.join(lines)) def md5(file_pth): with open(file_pth, 'rb') as f: hash = hashlib.new('md5') for chunk in iter(lambda: f.read(2**20), b''): hash.update(chunk) return str(hash.hexdigest()) def last_modified(pth): stamp = osp.getmtime(pth) m_ti = time.ctime(stamp) t_obj = time.strptime(m_ti) t = time.strftime('%Y%m%d%H%M%S', t_obj)[2:] return t