Spaces:
Running
on
T4
Running
on
T4
File size: 10,994 Bytes
6e445f1 decef32 6e445f1 d3c3aa9 decef32 d3c3aa9 decef32 d3c3aa9 decef32 6e445f1 d3c3aa9 decef32 d3c3aa9 decef32 d3c3aa9 decef32 6e445f1 3701f72 6e445f1 3701f72 6e445f1 3701f72 6e445f1 3701f72 6e445f1 e0ec743 8e36f59 378b71d eee15d2 46dd504 f206f62 eee15d2 f206f62 3701f72 6e445f1 1e5dbd3 4f81b41 f206f62 4f81b41 6e445f1 27cfa73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import torch
print("Installed the dependencies!")
import numpy as np
from PIL import Image
import cv2
import imutils
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data import MetadataCatalog
from oneformer import (
add_oneformer_config,
add_common_config,
add_swin_config,
add_dinat_config,
)
from demo.defaults import DefaultPredictor
from demo.visualizer import Visualizer, ColorMode
import gradio as gr
from huggingface_hub import hf_hub_download
KEY_DICT = {"Cityscapes (19 classes)": "cityscapes",
"COCO (133 classes)": "coco",
"ADE20K (150 classes)": "ade20k",}
SWIN_CFG_DICT = {"cityscapes": "configs/cityscapes/oneformer_swin_large_IN21k_384_bs16_90k.yaml",
"coco": "configs/coco/oneformer_swin_large_IN21k_384_bs16_100ep.yaml",
"ade20k": "configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml",}
SWIN_MODEL_DICT = {"cityscapes": hf_hub_download(repo_id="shi-labs/oneformer_cityscapes_swin_large",
filename="250_16_swin_l_oneformer_cityscapes_90k.pth"),
"coco": hf_hub_download(repo_id="shi-labs/oneformer_coco_swin_large",
filename="150_16_swin_l_oneformer_coco_100ep.pth"),
"ade20k": hf_hub_download(repo_id="shi-labs/oneformer_ade20k_swin_large",
filename="250_16_swin_l_oneformer_ade20k_160k.pth")
}
DINAT_CFG_DICT = {"cityscapes": "configs/cityscapes/oneformer_dinat_large_bs16_90k.yaml",
"coco": "configs/coco/oneformer_dinat_large_bs16_100ep.yaml",
"ade20k": "configs/ade20k/oneformer_dinat_large_IN21k_384_bs16_160k.yaml",}
DINAT_MODEL_DICT = {"cityscapes": hf_hub_download(repo_id="shi-labs/oneformer_cityscapes_dinat_large",
filename="250_16_dinat_l_oneformer_cityscapes_90k.pth"),
"coco": hf_hub_download(repo_id="shi-labs/oneformer_coco_dinat_large",
filename="150_16_dinat_l_oneformer_coco_100ep.pth"),
"ade20k": hf_hub_download(repo_id="shi-labs/oneformer_ade20k_dinat_large",
filename="250_16_dinat_l_oneformer_ade20k_160k.pth")
}
MODEL_DICT = {"DiNAT-L": DINAT_MODEL_DICT,
"Swin-L": SWIN_MODEL_DICT }
CFG_DICT = {"DiNAT-L": DINAT_CFG_DICT,
"Swin-L": SWIN_CFG_DICT }
WIDTH_DICT = {"cityscapes": 512,
"coco": 512,
"ade20k": 640}
cpu_device = torch.device("cpu")
PREDICTORS = {
"DiNAT-L": {
"Cityscapes (19 classes)": None,
"COCO (133 classes)": None,
"ADE20K (150 classes)": None
},
"Swin-L": {
"Cityscapes (19 classes)": None,
"COCO (133 classes)": None,
"ADE20K (150 classes)": None
}
}
METADATA = {
"DiNAT-L": {
"Cityscapes (19 classes)": None,
"COCO (133 classes)": None,
"ADE20K (150 classes)": None
},
"Swin-L": {
"Cityscapes (19 classes)": None,
"COCO (133 classes)": None,
"ADE20K (150 classes)": None
}
}
def setup_modules():
for dataset in ["Cityscapes (19 classes)", "COCO (133 classes)", "ADE20K (150 classes)"]:
for backbone in ["DiNAT-L", "Swin-L"]:
cfg = setup_cfg(dataset, backbone)
metadata = MetadataCatalog.get(
cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused"
)
if 'cityscapes_fine_sem_seg_val' in cfg.DATASETS.TEST_PANOPTIC[0]:
from cityscapesscripts.helpers.labels import labels
stuff_colors = [k.color for k in labels if k.trainId != 255]
metadata = metadata.set(stuff_colors=stuff_colors)
PREDICTORS[backbone][dataset] = DefaultPredictor(cfg)
METADATA[backbone][dataset] = metadata
def setup_cfg(dataset, backbone):
# load config from file and command-line arguments
cfg = get_cfg()
add_deeplab_config(cfg)
add_common_config(cfg)
add_swin_config(cfg)
add_oneformer_config(cfg)
add_dinat_config(cfg)
dataset = KEY_DICT[dataset]
cfg_path = CFG_DICT[backbone][dataset]
cfg.merge_from_file(cfg_path)
if torch.cuda.is_available():
cfg.MODEL.DEVICE = 'cuda'
else:
cfg.MODEL.DEVICE = 'cpu'
cfg.MODEL.WEIGHTS = MODEL_DICT[backbone][dataset]
cfg.freeze()
return cfg
# def setup_modules(dataset, backbone):
# cfg = setup_cfg(dataset, backbone)
# predictor = DefaultPredictor(cfg)
# # predictor = PREDICTORS[backbone][dataset]
# metadata = MetadataCatalog.get(
# cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused"
# )
# if 'cityscapes_fine_sem_seg_val' in cfg.DATASETS.TEST_PANOPTIC[0]:
# from cityscapesscripts.helpers.labels import labels
# stuff_colors = [k.color for k in labels if k.trainId != 255]
# metadata = metadata.set(stuff_colors=stuff_colors)
# return predictor, metadata
def panoptic_run(img, predictor, metadata):
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE)
predictions = predictor(img, "panoptic")
panoptic_seg, segments_info = predictions["panoptic_seg"]
out = visualizer.draw_panoptic_seg_predictions(
panoptic_seg.to(cpu_device), segments_info, alpha=0.5
)
visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
out_map = visualizer_map.draw_panoptic_seg_predictions(
panoptic_seg.to(cpu_device), segments_info, alpha=1, is_text=False
)
return out, out_map
def instance_run(img, predictor, metadata):
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE)
predictions = predictor(img, "instance")
instances = predictions["instances"].to(cpu_device)
out = visualizer.draw_instance_predictions(predictions=instances, alpha=0.5)
visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
out_map = visualizer_map.draw_instance_predictions(predictions=instances, alpha=1, is_text=False)
return out, out_map
def semantic_run(img, predictor, metadata):
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE)
predictions = predictor(img, "semantic")
out = visualizer.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=0.5
)
visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
out_map = visualizer_map.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=1, is_text=False
)
return out, out_map
TASK_INFER = {"the task is panoptic": panoptic_run, "the task is instance": instance_run, "the task is semantic": semantic_run}
def segment(path, task, dataset, backbone):
# predictor, metadata = setup_modules(dataset, backbone)
predictor = PREDICTORS[backbone][dataset]
metadata = METADATA[backbone][dataset]
img = cv2.imread(path)
width = WIDTH_DICT[KEY_DICT[dataset]]
img = imutils.resize(img, width=width)
out, out_map = TASK_INFER[task](img, predictor, metadata)
out = Image.fromarray(out.get_image())
out_map = Image.fromarray(out_map.get_image())
return out, out_map
title = "<h1 style='text-align: center'>OneFormer: One Transformer to Rule Universal Image Segmentation</h1>"
# style='margin-bottom: -10px;
description = "<p style='font-size: 14px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://praeclarumjj3.github.io/' style='text-decoration:none' target='_blank'>Jitesh Jain, </a> <a href='https://chrisjuniorli.github.io/' style='text-decoration:none' target='_blank'>Jiachen Li<sup>*</sup>, </a> <a href='https://www.linkedin.com/in/mtchiu/' style='text-decoration:none' target='_blank'>MangTik Chiu<sup>*</sup>, </a> <a href='https://alihassanijr.com/' style='text-decoration:none' target='_blank'>Ali Hassani, </a> <a href='https://www.linkedin.com/in/nukich74/' style='text-decoration:none' target='_blank'>Nikita Orlov, </a> <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Humphrey Shi</a></p>" \
+ "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/oneformer/' target='_blank'>Project Page</a> | <a href='https://arxiv.org/abs/2211.06220' target='_blank'>ArXiv Paper</a> | <a href='https://github.com/SHI-Labs/OneFormer' target='_blank'>Github Repo</a></p>" \
+ "<p style='text-align: center; margin: 5px; font-size: 14px; font-weight: w300;'> \
OneFormer is the first multi-task universal image segmentation framework based on transformers. Our single OneFormer model achieves state-of-the-art performance across all three segmentation tasks with a single task-conditioned joint training process. OneFormer uses a task token to condition the model on the task in focus, making our architecture task-guided for training, and task-dynamic for inference, all with a single model. We believe OneFormer is a significant step towards making image segmentation more universal and accessible.\
</p>" \
+ "<p style='text-align: center; font-size: 14px; margin: 5px; font-weight: w300;'> [Note: Inference on CPU may take upto 2 minutes. On a single RTX A6000 GPU, OneFormer is able to inference at more than 15 FPS.]</p>"
setup_modules()
gradio_inputs = [gr.Image(label="Input Image",type="filepath"),
gr.Radio(choices=["the task is panoptic" ,"the task is instance", "the task is semantic"], type="value", value="the task is panoptic", label="Task Token Input"),
gr.Radio(choices=["COCO (133 classes)" ,"Cityscapes (19 classes)", "ADE20K (150 classes)"], type="value", value="COCO (133 classes)", label="Model"),
gr.Radio(choices=["DiNAT-L" ,"Swin-L"], type="value", value="DiNAT-L", label="Backbone"),
]
gradio_outputs = [gr.Image(type="pil", label="Segmentation Overlay"), gr.Image(type="pil", label="Segmentation Map")]
examples = [["examples/coco.jpeg", "the task is panoptic", "COCO (133 classes)", "DiNAT-L"],
["examples/cityscapes.png", "the task is panoptic", "Cityscapes (19 classes)", "DiNAT-L"],
["examples/ade20k.jpeg", "the task is panoptic", "ADE20K (150 classes)", "DiNAT-L"]]
iface = gr.Interface(fn=segment, inputs=gradio_inputs,
outputs=gradio_outputs,
examples_per_page=5,
allow_flagging="never",
examples=examples, title=title,
description=description)
iface.launch(server_name="0.0.0.0") |