# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod import torch import torch.nn as nn from .multimodal_encoder.builder import build_vision_tower from .multimodal_projector.builder import build_vision_projector from .multimodal_adapter.builder import build_seg_projector from .multimodal_depth_adapter.builder import build_depth_projector from vcoder_llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, SEG_TOKEN_INDEX, DEPTH_TOKEN_INDEX class VCoderDSLlavaMetaModel: def __init__(self, config): super(VCoderDSLlavaMetaModel, self).__init__(config) self.config = config if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=True) self.mm_projector = build_vision_projector(config) if hasattr(config, "seg_mm_projector_type"): self.seg_mm_projector = build_seg_projector(config) if hasattr(config, "use_mm2_proj"): if config.use_mm2_proj: self.mm2_projector = build_vision_projector(config) if hasattr(config, "depth_mm_projector_type"): self.depth_mm_projector = build_depth_projector(config) if hasattr(config, "mm_vcoder_lm_emb"): self.vcoder_lm_emb = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) def get_vision_tower(self): vision_tower = getattr(self, 'vision_tower', None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_seg_modules(self, model_args, fsdp=None): mm_seg_select_layer = model_args.mm_seg_select_layer mm_seg_select_feature = model_args.mm_seg_select_feature self.config.seg_mm_hidden_size = self.vision_tower.hidden_size self.config.seg_use_mm_proj = True self.config.seg_mm_projector_type = getattr(model_args, 'seg_mm_projector_type', 'linear') self.config.mm_seg_select_layer = mm_seg_select_layer self.config.mm_seg_select_feature = mm_seg_select_feature self.seg_mm_projector = build_seg_projector(self.config) self.vcoder_lm_emb = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.config.pad_token_id) # use MLP from pretraining stage pretrain_mm2_mlp_adapter = model_args.pretrain_mm2_mlp_adapter if getattr(model_args, "use_mm2_proj"): self.config.use_mm2_proj = model_args.use_mm2_proj self.mm2_projector = build_vision_projector(self.config) if pretrain_mm2_mlp_adapter is not None: mm2_projector_weights = torch.load(pretrain_mm2_mlp_adapter, map_location='cpu') def get_w(weights, keyword): return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} self.mm2_projector.load_state_dict(get_w(mm2_projector_weights, 'mm_projector')) def initialize_depth_modules(self, model_args, fsdp=None): mm_depth_select_layer = model_args.mm_depth_select_layer mm_depth_select_feature = model_args.mm_depth_select_feature self.config.depth_mm_hidden_size = self.vision_tower.hidden_size self.config.depth_use_mm_proj = True self.config.depth_mm_projector_type = getattr(model_args, 'depth_mm_projector_type', 'linear') self.config.mm_depth_select_layer = mm_depth_select_layer self.config.mm_depth_select_feature = mm_depth_select_feature self.depth_mm_projector = build_depth_projector(self.config) class VCoderDSLlavaMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_seg_images(self, seg_images): seg_features = self.get_model().get_vision_tower()(seg_images) seg_features = self.get_model().seg_mm_projector(seg_features) return seg_features def encode_depth_images(self, depth_images): depth_features = self.get_model().get_vision_tower()(depth_images) depth_features = self.get_model().seg_mm_projector(depth_features) return depth_features def encode_images(self, images): image_features = self.get_model().get_vision_tower()(images) image_features = self.get_model().mm_projector(image_features) return image_features def encode_images_w_seg(self, images): image_features = self.get_model().get_vision_tower()(images) image_features = self.get_model().mm2_projector(image_features) return image_features def prepare_inputs_labels_for_multimodal( self, input_ids, attention_mask, past_key_values, labels, images, seg_images, depth_images ): vision_tower = self.get_vision_tower() if vision_tower is None or images is None or input_ids.shape[1] == 1: if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) return input_ids, attention_mask, past_key_values, None, labels if type(images) is list or images.ndim == 5: concat_images = torch.cat([image for image in images], dim=0) if seg_images is not None and hasattr(self, 'mm2_projector'): image_features = self.encode_images_w_seg(concat_images) else: image_features = self.encode_images(concat_images) split_sizes = [image.shape[0] for image in images] image_features = torch.split(image_features, split_sizes, dim=0) image_features = [x.flatten(0, 1) for x in image_features] else: if seg_images is not None and hasattr(self, 'mm2_projector'): image_features = self.encode_images_w_seg(images) else: image_features = self.encode_images(images) if seg_images is not None: if type(seg_images) is list or seg_images.ndim == 5: concat_seg_images = torch.cat([image for image in seg_images], dim=0) seg_features = self.encode_seg_images(concat_seg_images) split_sizes = [image.shape[0] for image in seg_images] seg_features = torch.split(seg_features, split_sizes, dim=0) seg_features = [x.flatten(0, 1) for x in seg_features] else: seg_features = self.encode_seg_images(seg_images) if depth_images is not None: is_depth_zero = [torch.mean(d) == 0 for d in depth_images] if type(depth_images) is list or depth_images.ndim == 5: concat_depth_images = torch.cat([image for image in depth_images], dim=0) depth_features = self.encode_depth_images(concat_depth_images) split_sizes = [image.shape[0] for image in depth_images] depth_features = torch.split(depth_features, split_sizes, dim=0) depth_features = [x.flatten(0, 1) for x in depth_features] else: depth_features = self.encode_depth_images(depth_images) else: is_depth_zero = [True] * input_ids.shape[0] self.get_model().vcoder_lm_emb.weight.data = self.get_model().get_input_embeddings().weight.data.clone() new_input_embeds = [] new_labels = [] if labels is not None else None cur_image_idx = 0 cur_seg_idx = 0 cur_depth_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0 and (cur_input_ids == SEG_TOKEN_INDEX).sum() == 0: # FIXME: this is a hacky fix, for deepspeed zero3 to work cur_image_features = image_features[cur_image_idx] half_len = cur_input_ids.shape[0] // 2 if seg_images is not None: cur_seg_features = seg_features[cur_seg_idx] is_cur_depth_zero = is_depth_zero[cur_depth_idx] if not is_cur_depth_zero: cur_depth_features = depth_features[cur_depth_idx] cur_input_embeds_1 = self.get_model().vcoder_lm_emb(cur_input_ids[:half_len]) cur_input_embeds_2 = self.get_model().vcoder_lm_emb(cur_input_ids[half_len:]) else: cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) if seg_images is not None: if not is_cur_depth_zero: cur_input_embeds = torch.cat([cur_input_embeds_1, cur_depth_features[0:0], cur_seg_features[0:0], cur_image_features[0:0], cur_input_embeds_2], dim=0) else: cur_input_embeds = torch.cat([cur_input_embeds_1, cur_seg_features[0:0], cur_image_features[0:0], cur_input_embeds_2], dim=0) else: cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) new_input_embeds.append(cur_input_embeds) if labels is not None: new_labels.append(labels[batch_idx]) cur_image_idx += 1 cur_seg_idx += 1 cur_depth_idx += 1 continue image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] cur_new_input_embeds = [] if labels is not None: cur_labels = labels[batch_idx] cur_new_labels = [] assert cur_labels.shape == cur_input_ids.shape while image_token_indices.numel() > 0: cur_image_features = image_features[cur_image_idx] image_token_start = image_token_indices[0] if seg_images is None: cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) else: cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:image_token_start])) cur_new_input_embeds.append(cur_image_features) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_labels = cur_labels[image_token_start+1:] cur_image_idx += 1 cur_input_ids = cur_input_ids[image_token_start+1:] image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] if seg_images is not None: seg_token_indices = torch.where(cur_input_ids == SEG_TOKEN_INDEX)[0] while seg_token_indices.numel() > 0: cur_seg_features = seg_features[cur_seg_idx] seg_token_start = seg_token_indices[0] cur_new_input_embeds.append(cur_seg_features) if labels is not None: cur_new_labels.append(torch.full((cur_seg_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_labels = cur_labels[seg_token_start+1:] cur_seg_idx += 1 cur_input_ids = cur_input_ids[seg_token_start+1:] seg_token_indices = torch.where(cur_input_ids == SEG_TOKEN_INDEX)[0] is_cur_depth_zero = is_depth_zero[cur_depth_idx] if not is_cur_depth_zero: depth_token_indices = torch.where(cur_input_ids == DEPTH_TOKEN_INDEX)[0] while depth_token_indices.numel() > 0: cur_depth_features = depth_features[cur_depth_idx] depth_token_start = depth_token_indices[0] cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids[:depth_token_start])) cur_new_input_embeds.append(cur_depth_features) if labels is not None: cur_new_labels.append(cur_labels[:depth_token_start]) cur_new_labels.append(torch.full((cur_depth_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_labels = cur_labels[depth_token_start+1:] cur_depth_idx += 1 cur_input_ids = cur_input_ids[depth_token_start+1:] depth_token_indices = torch.where(cur_input_ids == DEPTH_TOKEN_INDEX)[0] else: cur_depth_idx += 1 if cur_input_ids.numel() > 0: if seg_images is None: cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) else: cur_new_input_embeds.append(self.get_model().vcoder_lm_emb(cur_input_ids)) if labels is not None: cur_new_labels.append(cur_labels) cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) new_input_embeds.append(cur_new_input_embeds) if labels is not None: cur_new_labels = torch.cat(cur_new_labels, dim=0) new_labels.append(cur_new_labels) if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): max_len = max(x.shape[0] for x in new_input_embeds) new_input_embeds_align = [] for cur_new_embed in new_input_embeds: cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) new_input_embeds_align.append(cur_new_embed) new_input_embeds = torch.stack(new_input_embeds_align, dim=0) if labels is not None: new_labels_align = [] _new_labels = new_labels for cur_new_label in new_labels: cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) new_labels_align.append(cur_new_label) new_labels = torch.stack(new_labels_align, dim=0) if attention_mask is not None: new_attention_mask = [] for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) new_attention_mask.append(cur_new_attention_mask) attention_mask = torch.stack(new_attention_mask, dim=0) assert attention_mask.shape == new_labels.shape else: new_input_embeds = torch.stack(new_input_embeds, dim=0) if labels is not None: new_labels = torch.stack(new_labels, dim=0) if attention_mask is not None: new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) assert attention_mask.shape == new_input_embeds.shape[:2] return None, attention_mask, past_key_values, new_input_embeds, new_labels