shivi's picture
mask2former app setup
68a69f9
raw
history blame
2.02 kB
import gradio as gr
from predict import predict_masks
import glob
##Create list of examples to be loaded
example_list = glob.glob("examples/*")
example_list = list(map(lambda el:[el], example_list))
demo = gr.Blocks()
with demo:
gr.Markdown("# **<p align='center'>Mask2Former: Masked Attention Transformer for Universal Segmentation</p>**")
gr.Markdown("This space demonstrates the use of Mask2Former. It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/). \
Before Mask2Former, you'd have to resort to using a specialized architecture designed for solving a particular kind of image segmentation task (i.e. semantic, instance or panoptic segmentation). On the other hand, in the form of Mask2Former, for the first time, we have a single architecture that is capable of solving any segmentation task and performs on par or better than specialized architectures.")
with gr.Box():
with gr.Row():
segmentation_task = gr.Dropdown(["semantic", "panoptic"], value="panoptic", label="Segmentation Task", show_label=True)
with gr.Box():
with gr.Row():
input_image = gr.Image(type='filepath',label="Input Image", show_label=True)
output_mask = gr.Image(label="Predicted Masks", show_label=True)
gr.Markdown("**Predict**")
with gr.Box():
with gr.Row():
submit_button = gr.Button("Submit")
gr.Markdown("**Examples:**")
with gr.Column():
gr.Examples(example_list, [input_image, segmentation_task], output_mask, predict_masks)
submit_button.click(predict_masks, inputs=[input_image, segmentation_task], outputs=output_mask)
gr.Markdown('\n Demo created by: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a>')
demo.launch(debug=True)