|
import os
|
|
from dotenv import load_dotenv
|
|
from langchain.document_loaders import PyPDFLoader
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain.schema import Document
|
|
from langchain.prompts import PromptTemplate
|
|
from langchain.vectorstores import Neo4jVector
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
from langchain.graphs import Neo4jGraph
|
|
from langchain_experimental.graph_transformers import LLMGraphTransformer
|
|
from langchain.chains.graph_qa.cypher import GraphCypherQAChain
|
|
import streamlit as st
|
|
import tempfile
|
|
from neo4j import GraphDatabase
|
|
|
|
def main():
|
|
st.set_page_config(
|
|
layout="wide",
|
|
page_title="Graphy v1",
|
|
page_icon=":graph:"
|
|
)
|
|
st.sidebar.image('GRAP.png', use_column_width=True)
|
|
with st.sidebar.expander("Expand Me"):
|
|
st.markdown("""
|
|
This application allows you to upload a PDF file, extract its content into a Neo4j graph database, and perform queries using natural language.
|
|
It leverages LangChain and OpenAI's GPT models to generate Cypher queries that interact with the Neo4j database in real-time.
|
|
""")
|
|
st.title("Graphy: Realtime GraphRAG App")
|
|
|
|
load_dotenv()
|
|
|
|
|
|
if 'OPENAI_API_KEY' not in st.session_state:
|
|
st.sidebar.subheader("OpenAI API Key")
|
|
openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key:", type='password')
|
|
if openai_api_key:
|
|
os.environ['OPENAI_API_KEY'] = openai_api_key
|
|
st.session_state['OPENAI_API_KEY'] = openai_api_key
|
|
st.sidebar.success("OpenAI API Key set successfully.")
|
|
embeddings = OpenAIEmbeddings()
|
|
llm = ChatOpenAI(model_name="gpt-4o")
|
|
st.session_state['embeddings'] = embeddings
|
|
st.session_state['llm'] = llm
|
|
else:
|
|
embeddings = st.session_state['embeddings']
|
|
llm = st.session_state['llm']
|
|
|
|
|
|
neo4j_url = None
|
|
neo4j_username = None
|
|
neo4j_password = None
|
|
graph = None
|
|
|
|
|
|
if 'neo4j_connected' not in st.session_state:
|
|
st.sidebar.subheader("Connect to Neo4j Database")
|
|
neo4j_url = st.sidebar.text_input("Neo4j URL:", value="neo4j+s://<your-neo4j-url>")
|
|
neo4j_username = st.sidebar.text_input("Neo4j Username:", value="neo4j")
|
|
neo4j_password = st.sidebar.text_input("Neo4j Password:", type='password')
|
|
connect_button = st.sidebar.button("Connect")
|
|
if connect_button and neo4j_password:
|
|
try:
|
|
graph = Neo4jGraph(
|
|
url=neo4j_url,
|
|
username=neo4j_username,
|
|
password=neo4j_password
|
|
)
|
|
st.session_state['graph'] = graph
|
|
st.session_state['neo4j_connected'] = True
|
|
|
|
st.session_state['neo4j_url'] = neo4j_url
|
|
st.session_state['neo4j_username'] = neo4j_username
|
|
st.session_state['neo4j_password'] = neo4j_password
|
|
st.sidebar.success("Connected to Neo4j database.")
|
|
except Exception as e:
|
|
st.error(f"Failed to connect to Neo4j: {e}")
|
|
else:
|
|
graph = st.session_state['graph']
|
|
neo4j_url = st.session_state['neo4j_url']
|
|
neo4j_username = st.session_state['neo4j_username']
|
|
neo4j_password = st.session_state['neo4j_password']
|
|
|
|
|
|
if graph is not None:
|
|
|
|
uploaded_file = st.file_uploader("Please select a PDF file.", type="pdf")
|
|
|
|
if uploaded_file is not None and 'qa' not in st.session_state:
|
|
with st.spinner("Processing the PDF..."):
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
|
|
tmp_file.write(uploaded_file.read())
|
|
tmp_file_path = tmp_file.name
|
|
|
|
|
|
loader = PyPDFLoader(tmp_file_path)
|
|
pages = loader.load_and_split()
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=40)
|
|
docs = text_splitter.split_documents(pages)
|
|
|
|
lc_docs = []
|
|
for doc in docs:
|
|
lc_docs.append(Document(page_content=doc.page_content.replace("\n", ""),
|
|
metadata={'source': uploaded_file.name}))
|
|
|
|
|
|
cypher = """
|
|
MATCH (n)
|
|
DETACH DELETE n;
|
|
"""
|
|
graph.query(cypher)
|
|
|
|
|
|
allowed_nodes = ["Patient", "Disease", "Medication", "Test", "Symptom", "Doctor"]
|
|
allowed_relationships = ["HAS_DISEASE", "TAKES_MEDICATION", "UNDERWENT_TEST", "HAS_SYMPTOM", "TREATED_BY"]
|
|
|
|
|
|
transformer = LLMGraphTransformer(
|
|
llm=llm,
|
|
allowed_nodes=allowed_nodes,
|
|
allowed_relationships=allowed_relationships,
|
|
node_properties=False,
|
|
relationship_properties=False
|
|
)
|
|
|
|
graph_documents = transformer.convert_to_graph_documents(lc_docs)
|
|
graph.add_graph_documents(graph_documents, include_source=True)
|
|
|
|
|
|
index = Neo4jVector.from_existing_graph(
|
|
embedding=embeddings,
|
|
url=neo4j_url,
|
|
username=neo4j_username,
|
|
password=neo4j_password,
|
|
database="neo4j",
|
|
node_label="Patient",
|
|
text_node_properties=["id", "text"],
|
|
embedding_node_property="embedding",
|
|
index_name="vector_index",
|
|
keyword_index_name="entity_index",
|
|
search_type="hybrid"
|
|
)
|
|
|
|
st.success(f"{uploaded_file.name} preparation is complete.")
|
|
|
|
|
|
schema = graph.get_schema
|
|
|
|
|
|
template = """
|
|
Task: Generate a Cypher statement to query the graph database.
|
|
|
|
Instructions:
|
|
Use only relationship types and properties provided in schema.
|
|
Do not use other relationship types or properties that are not provided.
|
|
|
|
schema:
|
|
{schema}
|
|
|
|
Note: Do not include explanations or apologies in your answers.
|
|
Do not answer questions that ask anything other than creating Cypher statements.
|
|
Do not include any text other than generated Cypher statements.
|
|
|
|
Question: {question}"""
|
|
|
|
question_prompt = PromptTemplate(
|
|
template=template,
|
|
input_variables=["schema", "question"]
|
|
)
|
|
|
|
qa = GraphCypherQAChain.from_llm(
|
|
llm=llm,
|
|
graph=graph,
|
|
cypher_prompt=question_prompt,
|
|
verbose=True,
|
|
allow_dangerous_requests=True
|
|
)
|
|
st.session_state['qa'] = qa
|
|
else:
|
|
st.warning("Please connect to the Neo4j database before you can upload a PDF.")
|
|
|
|
if 'qa' in st.session_state:
|
|
st.subheader("Ask a Question")
|
|
with st.form(key='question_form'):
|
|
question = st.text_input("Enter your question:")
|
|
submit_button = st.form_submit_button(label='Submit')
|
|
|
|
if submit_button and question:
|
|
with st.spinner("Generating answer..."):
|
|
res = st.session_state['qa'].invoke({"query": question})
|
|
st.write("\n**Answer:**\n" + res['result'])
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|
|
|
|
|
|
|