import gradio as gr import base64 from openai import OpenAI from pathlib import Path import tempfile import os API_KEY = os.getenv("openai") def process_image(image_path): client = OpenAI(api_key=API_KEY) # Read the image file and encode to base64 with open(image_path, "rb") as image_file: encoded_image = base64.b64encode(image_file.read()).decode('utf-8') # Use GPT-4 Vision to perform OCR response = client.chat.completions.create( model="gpt-4o-mini", messages=[ { "role": "system", "content": "You are an OCR system. Extract all text from the image and return it without any additional commentary." }, { "role": "user", "content": [ {"type": "text", "text": "What text is in this image?"}, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{encoded_image}" } } ] } ], max_tokens=300 ) extracted_text = response.choices[0].message.content # Format text for dyslexia-friendly reading formatted_text = f"
{extracted_text}
" # Generate speech from text speech_file_path = Path(tempfile.gettempdir()) / "speech.mp3" speech_response = client.audio.speech.create( model="tts-1", voice="nova", input=extracted_text ) speech_response.stream_to_file(speech_file_path) return formatted_text, str(speech_file_path) # Gradio interface iface = gr.Interface( fn=process_image, inputs=[ gr.Image(type="filepath", label="Upload Image") ], outputs=[ gr.HTML(label="Extracted and Formatted Text"), gr.Audio(label="Text-to-Speech") ], title="Dyslexia-Friendly Reading Assistant", description="Upload an image of text. The app will extract the text, format it for easier reading, and provide an audio version." ) iface.launch()