shresthasingh commited on
Commit
08af2b0
1 Parent(s): ffd668a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +220 -0
app.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import json
3
+ import requests
4
+ from typing import List, Optional
5
+ from pydantic import BaseModel, Field
6
+ from together import Together
7
+
8
+ # Initialize Together API
9
+ together = Together(api_key=os.getenv("togetherai"))
10
+
11
+ # Define the schemas for different API operations
12
+ class OrderItem(BaseModel):
13
+ item_id: str
14
+ quantity: int
15
+
16
+ class CreateOrderExtract(BaseModel):
17
+ user_id: Optional[str] = Field(None, description="The user's ID if provided it can be a name as well")
18
+ items: List[OrderItem] = Field(..., description="List of items ordered")
19
+
20
+ class CancelOrderExtract(BaseModel):
21
+ order_id: str = Field(..., description="The ID of the order to cancel can be referenced as order id or order or id or order number")
22
+
23
+ class CheckOrderStatusExtract(BaseModel):
24
+ order_id: str = Field(..., description="The ID of the order to check can be referenced as order id or order or id or order number")
25
+
26
+ class CreateInvoiceExtract(BaseModel):
27
+ order_id: str = Field(..., description="The ID of the order for which to create an invoice")
28
+ amount: float = Field(..., description="The amount of the invoice")
29
+
30
+ class GetInvoiceDetailsExtract(BaseModel):
31
+ invoice_id: str = Field(..., description="The ID of the invoice to get details for")
32
+
33
+ class CreatePaymentExtract(BaseModel):
34
+ invoice_id: str = Field(..., description="The ID of the invoice to pay")
35
+ order_id: str = Field(..., description="The ID of the order associated with the payment")
36
+ amount: float = Field(..., description="The amount of the payment")
37
+
38
+ # Function to classify user message
39
+ def classify_message(message: str) -> str:
40
+ classify = together.chat.completions.create(
41
+ messages=[
42
+ {
43
+ "role": "system",
44
+ "content": "Classify the following message into one of these categories: create_order, cancel_order, check_order_status, create_invoice, get_invoice_details, create_payment. Respond only with the category name.",
45
+ },
46
+ {
47
+ "role": "user",
48
+ "content": message,
49
+ },
50
+ ],
51
+ model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
52
+ )
53
+ return classify.choices[0].message.content.strip()
54
+
55
+ # Function to extract information based on classification
56
+ def extract_info(message: str, classification: str) -> dict:
57
+ schema_map = {
58
+ "create_order": CreateOrderExtract,
59
+ "cancel_order": CancelOrderExtract,
60
+ "check_order_status": CheckOrderStatusExtract,
61
+ "create_invoice": CreateInvoiceExtract,
62
+ "get_invoice_details": GetInvoiceDetailsExtract,
63
+ "create_payment": CreatePaymentExtract,
64
+ }
65
+
66
+ schema = schema_map[classification]
67
+
68
+ extract = together.chat.completions.create(
69
+ messages=[
70
+ {
71
+ "role": "system",
72
+ "content": f"Extract {classification} information from the following message. Respond only in JSON.",
73
+ },
74
+ {
75
+ "role": "user",
76
+ "content": message,
77
+ },
78
+ ],
79
+ model="mistralai/Mixtral-8x7B-Instruct-v0.1",
80
+ response_format={
81
+ "type": "json_object",
82
+ "schema": schema.model_json_schema(),
83
+ },
84
+ )
85
+ return json.loads(extract.choices[0].message.content)
86
+
87
+ # Function to make API call
88
+ def make_api_call(classification: str, info: dict) -> dict:
89
+ base_url = os.getenv("baseurl")
90
+
91
+ api_map = {
92
+ "create_order": ("POST", f"{base_url}/orders"),
93
+ "cancel_order": ("POST", f"{base_url}/orders/{{order_id}}/cancel"),
94
+ "check_order_status": ("GET", f"{base_url}/orders/{{order_id}}/status"),
95
+ "create_invoice": ("POST", f"{base_url}/invoices"),
96
+ "get_invoice_details": ("GET", f"{base_url}/invoices/{{invoice_id}}"),
97
+ "create_payment": ("POST", f"{base_url}/payments"),
98
+ }
99
+
100
+ method, url_template = api_map[classification]
101
+
102
+ # Replace placeholders in the URL if necessary
103
+ try:
104
+ url = url_template.format(**info)
105
+ except KeyError as e:
106
+ return {"error": f"Missing required information: {str(e)}"}
107
+
108
+ try:
109
+ if method == "GET":
110
+ response = requests.get(url)
111
+ elif method == "POST":
112
+ response = requests.post(url, json=info)
113
+ response.raise_for_status()
114
+ return response.json()
115
+ except requests.RequestException as e:
116
+ return {"error": f"API request failed: {str(e)}"}
117
+
118
+ # Function to interpret API response
119
+ def interpret_response(user_message: str, classification: str, api_response: dict) -> str:
120
+ interpret = together.chat.completions.create(
121
+ messages=[
122
+ {
123
+ "role": "system",
124
+ "content": "Process user query and automated system API response to form a coherent natural reply that will help the user affirm the situation of their request. Your response will be streamed directly to the user. Do not include the fact that you are reading the API response. It should be natural and helpful. Make sure to give the user the relevant IDs and information, and do not talk more than that. Just give information and that's it.",
125
+ },
126
+ {
127
+ "role": "user",
128
+ "content": f"User message: {user_message}\nRequest type: {classification}\nAPI response: {json.dumps(api_response)}",
129
+ },
130
+ ],
131
+ model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
132
+ )
133
+ return interpret.choices[0].message.content
134
+
135
+ # Main function to process the user request
136
+ def process_request(user_message: str) -> str:
137
+ # Classify the message
138
+ classification = classify_message(user_message)
139
+
140
+ # Extract information based on classification
141
+ info = extract_info(user_message, classification)
142
+
143
+ # Make API call
144
+ api_response = make_api_call(classification, info)
145
+
146
+ # Interpret the response
147
+ interpretation = interpret_response(user_message, classification, api_response)
148
+
149
+ return interpretation
150
+
151
+ # Define the API documentation with the repository link
152
+ api_documentation = """
153
+ ## Available API Methods
154
+
155
+ ### 1. Create Order
156
+ - **Endpoint:** POST /orders
157
+ - **Inputs:**
158
+ - user_id: (Optional) The user's ID or name.
159
+ - items: List of ordered items with `item_id` and `quantity`.
160
+
161
+ ### 2. Cancel Order
162
+ - **Endpoint:** POST /orders/{order_id}/cancel
163
+ - **Inputs:**
164
+ - order_id: The ID of the order to be canceled.
165
+
166
+ ### 3. Check Order Status
167
+ - **Endpoint:** GET /orders/{order_id}/status
168
+ - **Inputs:**
169
+ - order_id: The ID of the order to check status.
170
+
171
+ ### 4. Create Invoice
172
+ - **Endpoint:** POST /invoices
173
+ - **Inputs:**
174
+ - order_id: The ID of the order.
175
+ - amount: The invoice amount.
176
+
177
+ ### 5. Get Invoice Details
178
+ - **Endpoint:** GET /invoices/{invoice_id}
179
+ - **Inputs:**
180
+ - invoice_id: The ID of the invoice to retrieve.
181
+
182
+ ### 6. Create Payment
183
+ - **Endpoint:** POST /payments
184
+ - **Inputs:**
185
+ - invoice_id: The ID of the invoice to pay.
186
+ - order_id: The ID of the associated order.
187
+ - amount: The payment amount.
188
+
189
+ You can use these examples when interacting with the system.
190
+
191
+ For more details on the API, including the routes and implementation, visit the GitHub repository:
192
+ [Order Management API Repository](https://github.com/akash-mondal/order-management-api)
193
+ """
194
+
195
+ # Build the Gradio interface
196
+ with gr.Blocks() as demo:
197
+ gr.Markdown("# Function Calling Demo")
198
+ gr.Markdown("""
199
+ This is a demo for performing function calls using custom API endpoints. The demo uses Together AI for language models (LLMs), where:
200
+
201
+ - **Mixtral 8x7B** is used to extract API information from natural language.
202
+ - **Llama 3.1 70B** is used to classify which API to route to.
203
+ - **Llama 3.1 8B** is used to interpret API responses into natural language for the end user.
204
+ """)
205
+
206
+ with gr.Tab("User Input"):
207
+ user_input = gr.Textbox(label="Enter your message")
208
+ output = gr.Textbox(label="Response")
209
+ submit_button = gr.Button("Submit")
210
+
211
+ def handle_submit(user_message):
212
+ return process_request(user_message)
213
+
214
+ submit_button.click(handle_submit, inputs=user_input, outputs=output)
215
+
216
+ with gr.Tab("API Documentation"):
217
+ gr.Markdown(api_documentation)
218
+
219
+ # Run the demo
220
+ demo.launch()