Spaces:
Sleeping
Sleeping
File size: 4,507 Bytes
0667fd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
import os
from llama_parse import LlamaParse
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.schema import Document as LangchainDocument
# Initialize global variables
vs_dict = {}
# Helper function to load and parse the input data
def mariela_parse(files):
parser = LlamaParse(
api_key=os.getenv("LLAMA_API_KEY"),
result_type="markdown",
verbose=True
)
parsed_documents = []
for file in files:
parsed_documents.extend(parser.load_data(file.name))
return parsed_documents
# Create vector database
def mariela_create_vector_database(parsed_documents, collection_name):
langchain_docs = [
LangchainDocument(page_content=doc.text, metadata=doc.metadata)
for doc in parsed_documents
]
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=100)
docs = text_splitter.split_documents(langchain_docs)
embed_model = FastEmbedEmbeddings(model_name="BAAI/bge-base-en-v1.5")
vs = Chroma.from_documents(
documents=docs,
embedding=embed_model,
persist_directory="chroma_db",
collection_name=collection_name
)
return vs
# Function to handle file upload and parsing
def mariela_upload_and_parse(files, collection_name):
global vs_dict
if not files:
return "Please upload at least one file."
parsed_documents = mariela_parse(files)
vs = mariela_create_vector_database(parsed_documents, collection_name)
vs_dict[collection_name] = vs
return f"Files uploaded, parsed, and stored successfully in collection: {collection_name}"
# Function to handle retrieval
def mariela_retrieve(question, collection_name):
global vs_dict
if collection_name not in vs_dict:
return f"Collection '{collection_name}' not found. Please upload and parse files for this collection first."
vs = vs_dict[collection_name]
results = vs.similarity_search(question, k=4)
formatted_results = []
for i, doc in enumerate(results, 1):
formatted_results.append(f"Result {i}:\n{doc.page_content}\n\nMetadata: {doc.metadata}\n")
return "\n\n".join(formatted_results)
# Supported file types list
supported_file_types = """
Supported Document Types:
- Base types: pdf
- Documents and presentations: 602, abw, cgm, cwk, doc, docx, docm, dot, dotm, hwp, key, lwp, mw, mcw, pages, pbd, ppt, pptm, pptx, pot, potm, potx, rtf, sda, sdd, sdp, sdw, sgl, sti, sxi, sxw, stw, sxg, txt, uof, uop, uot, vor, wpd, wps, xml, zabw, epub
- Images: jpg, jpeg, png, gif, bmp, svg, tiff, webp, web, htm, html
- Spreadsheets: xlsx, xls, xlsm, xlsb, xlw, csv, dif, sylk, slk, prn, numbers, et, ods, fods, uos1, uos2, dbf, wk1, wk2, wk3, wk4, wks, 123, wq1, wq2, wb1, wb2, wb3, qpw, xlr, eth, tsv
"""
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Mariela: Multi-Action Retrieval and Intelligent Extraction Learning Assistant")
gr.Markdown("This application allows you to upload documents, parse them, and then ask questions to retrieve relevant information.")
with gr.Tab("Upload and Parse Files"):
gr.Markdown("## Upload and Parse Files")
gr.Markdown("Upload your documents here to create a searchable knowledge base.")
file_input = gr.File(label="Upload Files", file_count="multiple")
collection_name_input = gr.Textbox(label="Collection Name")
upload_button = gr.Button("Upload and Parse")
upload_output = gr.Textbox(label="Status")
upload_button.click(mariela_upload_and_parse, inputs=[file_input, collection_name_input], outputs=upload_output)
with gr.Tab("Retrieval"):
gr.Markdown("## Retrieval")
gr.Markdown("Ask questions about your uploaded documents here.")
collection_name_retrieval = gr.Textbox(label="Collection Name")
question_input = gr.Textbox(label="Enter a query to retrieve relevant passages")
retrieval_output = gr.Textbox(label="Retrieved Passages")
retrieval_button = gr.Button("Retrieve")
retrieval_button.click(mariela_retrieve, inputs=[question_input, collection_name_retrieval], outputs=retrieval_output)
with gr.Tab("Supported Document Types"):
gr.Markdown("## Supported Document Types")
gr.Markdown(supported_file_types)
demo.launch(debug=True) |