Spaces:
Sleeping
Sleeping
File size: 9,668 Bytes
c7ea556 8b80009 c7ea556 7ff928b c7ea556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import shutil
import requests
import json
import gradio as gr
import PyPDF2
import chromadb
import csv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
# Constants
API_KEY = os.getenv("togetherai")
BASE_URL = "https://api.together.xyz/v1/chat/completions"
CHUNK_SIZE = 6000 # Maximum words per chunk
TEMP_SUMMARY_FILE = "temp_summaries.txt"
COLLECTIONS_FILE = "collections.csv"
# Function to convert PDF to text
def pdf_to_text(file_path):
with open(file_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Function to summarize text using LLM
def summarize_text(text):
user_prompt = f"""
You are an expert in legal language and document summarization. Your task is to provide a concise and accurate summary of the given document.
Keep the summary concise, ideally in 2000 words, while covering all essential points. Here is the document to summarize:
{text}
"""
return call_llm(user_prompt)
# Function to handle file upload, summarization, and saving to ChromaDB
def handle_file_upload(files, collection_name):
if not collection_name:
return "Please provide a collection name."
os.makedirs('uploaded_pdfs', exist_ok=True)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=100)
embeddings = HuggingFaceEmbeddings(model_name="thenlper/gte-small")
client = chromadb.PersistentClient(path="./db")
try:
collection = client.create_collection(name=collection_name)
except ValueError as e:
return f"Error creating collection: {str(e)}. Please try a different collection name."
file_names = []
with open(TEMP_SUMMARY_FILE, 'w', encoding='utf-8') as temp_file:
for file in files:
file_name = os.path.basename(file.name)
file_names.append(file_name)
file_path = os.path.join('uploaded_pdfs', file_name)
shutil.copy(file.name, file_path)
text = pdf_to_text(file_path)
chunks = text_splitter.split_text(text)
for i, chunk in enumerate(chunks):
summary = summarize_text(chunk)
temp_file.write(f"Summary of {file_name} (Part {i+1}):\n{summary}\n\n")
# Process the temporary file and add to ChromaDB
with open(TEMP_SUMMARY_FILE, 'r', encoding='utf-8') as temp_file:
summaries = temp_file.read()
summary_chunks = text_splitter.split_text(summaries)
for i, chunk in enumerate(summary_chunks):
vector = embeddings.embed_query(chunk)
collection.add(
embeddings=[vector],
documents=[chunk],
ids=[f"summary_{i}"]
)
os.remove(TEMP_SUMMARY_FILE)
# Update collections.csv
update_collections_csv(collection_name, file_names)
return "Files uploaded, summarized, and processed successfully."
# Function to update collections.csv
def update_collections_csv(collection_name, file_names):
file_names_str = ", ".join(file_names)
with open(COLLECTIONS_FILE, 'a', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow([collection_name, file_names_str])
# Function to read collections.csv
def read_collections():
if not os.path.exists(COLLECTIONS_FILE):
return "No collections found."
with open(COLLECTIONS_FILE, 'r') as csvfile:
reader = csv.reader(csvfile)
collections = [f"Collection: {row[0]}\nFiles: {row[1]}\n\n" for row in reader]
return "".join(collections)
# Function to search vector database
def search_vector_database(query, collection_name):
if not collection_name:
return "Please provide a collection name."
embeddings = HuggingFaceEmbeddings(model_name="thenlper/gte-small")
client = chromadb.PersistentClient(path="./db")
try:
collection = client.get_collection(name=collection_name)
except ValueError as e:
return f"Error accessing collection: {str(e)}. Make sure the collection name is correct."
query_vector = embeddings.embed_query(query)
results = collection.query(query_embeddings=[query_vector], n_results=2, include=["documents"])
return "\n\n".join(results["documents"][0])
# Function to call LLM
def call_llm(prompt):
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"top_p": 0.7,
"top_k": 50,
"repetition_penalty": 1,
"stop": ["\"\""],
"stream": False
}
response = requests.post(BASE_URL, headers=headers, data=json.dumps(data))
response.raise_for_status()
return response.json()['choices'][0]['message']['content']
# Function to answer questions using Rachel.AI
def answer_question(question, collection_name):
context = search_vector_database(question, collection_name)
prompt = f"""
You are a paralegal AI assistant. Your role is to assist with legal inquiries by providing clear and concise answers based on the provided question and legal context. Always maintain a highly professional tone, ensuring that your responses are well-reasoned and legally accurate.
Question: {question}
Legal Context: {context}
Please provide a detailed response considering the above information. also when answering the question make sure to inform the user which filename you are using (filename is often given in the context)
"""
return call_llm(prompt)
# Gradio interface
def gradio_interface():
with gr.Blocks(theme='gl198976/The-Rounded') as interface:
gr.Markdown("# rachel.ai backend")
gr.Markdown("""
### Warning
If you encounter an error when uploading files, try changing the collection name and upload again.
Each collection name must be unique.
""")
with gr.Tab("Document Upload and Search"):
with gr.Row():
with gr.Column():
collection_name_input = gr.Textbox(label="Collection Name", placeholder="Enter a unique name for this collection")
file_upload = gr.Files(file_types=[".pdf"], label="Upload PDFs")
upload_btn = gr.Button("Upload, Summarize, and Process Files")
upload_status = gr.Textbox(label="Upload Status", interactive=False)
with gr.Column():
search_query_input = gr.Textbox(label="Search Query")
search_collection_name = gr.Textbox(label="Collection Name for Search", placeholder="Enter the collection name to search")
search_output = gr.Textbox(label="Search Results", lines=10)
search_btn = gr.Button("Search")
api_details = gr.Markdown("""
### API Endpoint Details
- **URL:** http://0.0.0.0:7860/search_vector_database
- **Method:** POST
- **Example Usage:**
```python
from gradio_client import Client
client = Client("http://0.0.0.0:7860/")
result = client.predict(
"search query", # str in 'Search Query' Textbox component
"name of collection given in ui", # str in 'Collection Name' Textbox component
api_name="/search_vector_database"
)
print(result)
```
""")
with gr.Tab("Rachel.AI"):
question_input = gr.Textbox(label="Ask a question")
rachel_collection_name = gr.Textbox(label="Collection Name", placeholder="Enter the collection name to search")
answer_output = gr.Textbox(label="Answer", lines=10)
ask_btn = gr.Button("Ask Rachel.AI")
rachel_api_details = gr.Markdown("""
### API Endpoint Details for Rachel.AI
- **URL:** http://0.0.0.0:7860/answer_question
- **Method:** POST
- **Example Usage:**
```python
from gradio_client import Client
client = Client("http://0.0.0.0:7860/")
result = client.predict(
"question", # str in 'Ask a question' Textbox component
"collection_name", # str in 'Collection Name' Textbox component
api_name="/answer_question"
)
print(result)
```
""")
with gr.Tab("Collections"):
collections_output = gr.Textbox(label="Collections and Files", lines=20)
refresh_btn = gr.Button("Refresh Collections")
upload_btn.click(handle_file_upload, inputs=[file_upload, collection_name_input], outputs=[upload_status])
search_btn.click(search_vector_database, inputs=[search_query_input, search_collection_name], outputs=[search_output])
ask_btn.click(answer_question, inputs=[question_input, rachel_collection_name], outputs=[answer_output])
refresh_btn.click(read_collections, inputs=[], outputs=[collections_output])
interface.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
gradio_interface() |