Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
import spacy | |
from spacy import displacy | |
nlp = spacy.load("en_core_web_sm") | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
def get_hatespeech_score(text): | |
tokenizer = AutoTokenizer.from_pretrained("unhcr/hatespeech-detection") | |
model = AutoModelForSequenceClassification.from_pretrained("unhcr/hatespeech-detection") | |
# Tokenize input text | |
inputs = tokenizer(text, return_tensors='pt') | |
# Perform inference | |
outputs = model(**inputs) | |
# Get predicted label | |
predicted_label_idx = torch.argmax(outputs.logits).item() | |
predicted_label = model.config.id2label[predicted_label_idx] | |
return predicted_label | |
def text_analysis(text): | |
label_1 = get_hatespeech_score(text) | |
html = '''<!doctype html> | |
<html> | |
<body> | |
<h1>Text Sentiment Analysis</h1> | |
<div style=background-color:#d9eee1> | |
<h2>Overall Sentiment</h2> | |
<p>{}</p> | |
</div> | |
<div style=background-color:#fff4a3> | |
<h2>Adult Content</h2> | |
<p>{}</p> | |
</div> | |
<div style=background-color:#ffc0c7> | |
<h2>Hate Speech</h2> | |
<p>{}</p> | |
</div> | |
<div style=background-color:#cfb0b1> | |
<h2>Text Summary</h2> | |
<p>{}</p> | |
</div> | |
</body> | |
</html> | |
'''.format("Alpha", label_1, "Gamma", "Theta") | |
doc = nlp(text) | |
pos_tokens = [] | |
for token in doc: | |
pos_tokens.extend([(token.text, token.pos_), (" ", None)]) | |
return pos_tokens, html | |
demo = gr.Interface( | |
text_analysis, | |
gr.Textbox(placeholder="Enter sentence here..."), | |
["highlight", "html"], | |
examples=[ | |
["What a beautiful morning for a walk!"], | |
["It was the best of times, it was the worst of times."], | |
], | |
) | |
demo.launch() | |