Spaces:
Runtime error
Runtime error
shrirangphadke
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
-
|
5 |
-
# Load model directly
|
6 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
-
|
8 |
import torch
|
9 |
-
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
10 |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
# Define a function to analyze text for potential adult content
|
17 |
def analyze_adult_content(text):
|
|
|
|
|
|
|
|
|
18 |
# Tokenize input text
|
19 |
inputs = tokenizer(text, return_tensors='pt')
|
20 |
|
@@ -40,20 +52,13 @@ def analyze_sentiment(text):
|
|
40 |
else:
|
41 |
sentiment_label = 'Neutral'
|
42 |
|
43 |
-
return sentiment_label
|
44 |
-
|
45 |
-
# Example text
|
46 |
-
text = "I really enjoy watching this movie, it's so entertaining!"
|
47 |
-
|
48 |
-
# Analyze adult content
|
49 |
-
adult_content_label = analyze_adult_content(text)
|
50 |
-
print("Adult Content Label:", adult_content_label)
|
51 |
|
52 |
def text_analysis(text):
|
53 |
# Analyze sentiment
|
54 |
-
sentiment_label
|
55 |
-
|
56 |
-
|
57 |
|
58 |
html = '''<!doctype html>
|
59 |
<html>
|
@@ -67,17 +72,13 @@ def text_analysis(text):
|
|
67 |
<h2>Adult Content</h2>
|
68 |
<p>{}</p>
|
69 |
</div>
|
70 |
-
<div style=background-color:#ffc0c7>
|
71 |
-
<h2>Hate Speech</h2>
|
72 |
-
<p>{}</p>
|
73 |
-
</div>
|
74 |
<div style=background-color:#cfb0b1>
|
75 |
<h2>Text Summary</h2>
|
76 |
<p>{}</p>
|
77 |
</div>
|
78 |
</body>
|
79 |
</html>
|
80 |
-
'''.format(sentiment_label,
|
81 |
return html
|
82 |
|
83 |
demo = gr.Interface(
|
@@ -90,4 +91,4 @@ demo = gr.Interface(
|
|
90 |
],
|
91 |
)
|
92 |
|
93 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
|
|
|
|
|
|
|
|
4 |
import torch
|
|
|
5 |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
6 |
+
# Load model directly
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM, RobertaTokenizer, RobertaForSequenceClassification
|
8 |
+
|
9 |
+
# Define a function for text summarization using GPT
|
10 |
+
def summarize_text(text, max_length=1024):
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("kabita-choudhary/finetuned-bart-for-conversation-summary")
|
12 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("kabita-choudhary/finetuned-bart-for-conversation-summary")
|
13 |
+
|
14 |
+
# Tokenize input text
|
15 |
+
input_ids = tokenizer.encode(text, return_tensors='pt', max_length=1024, truncation=True)
|
16 |
|
17 |
+
# Generate summary
|
18 |
+
summary_ids = model.generate(input_ids, max_length=max_length, num_return_sequences=1, early_stopping=True)
|
19 |
+
|
20 |
+
# Decode and return summary
|
21 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
22 |
+
return summary
|
23 |
|
24 |
# Define a function to analyze text for potential adult content
|
25 |
def analyze_adult_content(text):
|
26 |
+
# Load pre-trained RoBERTa model and tokenizer
|
27 |
+
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
28 |
+
model = RobertaForSequenceClassification.from_pretrained('roberta-base')
|
29 |
+
|
30 |
# Tokenize input text
|
31 |
inputs = tokenizer(text, return_tensors='pt')
|
32 |
|
|
|
52 |
else:
|
53 |
sentiment_label = 'Neutral'
|
54 |
|
55 |
+
return sentiment_label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def text_analysis(text):
|
58 |
# Analyze sentiment
|
59 |
+
sentiment_label = analyze_adult_content(text)
|
60 |
+
sentiment = analyze_sentiment(text)
|
61 |
+
summary = summarize_text(text)
|
62 |
|
63 |
html = '''<!doctype html>
|
64 |
<html>
|
|
|
72 |
<h2>Adult Content</h2>
|
73 |
<p>{}</p>
|
74 |
</div>
|
|
|
|
|
|
|
|
|
75 |
<div style=background-color:#cfb0b1>
|
76 |
<h2>Text Summary</h2>
|
77 |
<p>{}</p>
|
78 |
</div>
|
79 |
</body>
|
80 |
</html>
|
81 |
+
'''.format(sentiment_label, sentiment, summary)
|
82 |
return html
|
83 |
|
84 |
demo = gr.Interface(
|
|
|
91 |
],
|
92 |
)
|
93 |
|
94 |
+
demo.launch()
|