import gradio as gr import os import torch import spacy from spacy import displacy nlp = spacy.load("en_core_web_sm") # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification def get_hatespeech_score(text): tokenizer = AutoTokenizer.from_pretrained("unhcr/hatespeech-detection") model = AutoModelForSequenceClassification.from_pretrained("unhcr/hatespeech-detection") # Tokenize input text inputs = tokenizer(text, return_tensors='pt') # Perform inference outputs = model(**inputs) # Get predicted label predicted_label_idx = torch.argmax(outputs.logits).item() predicted_label = model.config.id2label[predicted_label_idx] return predicted_label def text_analysis(text): label_1 = get_hatespeech_score(text) html = '''
{}
{}
{}
{}