shrivarshan commited on
Commit
1bafbdd
1 Parent(s): 4925bad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -2,13 +2,13 @@
2
  import streamlit as st
3
  import requests
4
  from transformers import pipeline
5
- import spacy
6
 
7
  # Initialize the summarizer pipeline using Hugging Face Transformers
8
  summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
9
 
10
  # Load spaCy model
11
- nlp = spacy.load("en_core_web_sm")
12
 
13
  # Function to perform search using Google Custom Search API
14
  def perform_search(query):
@@ -39,17 +39,17 @@ def rank_sources(results):
39
 
40
  # Function to extract related topics using spaCy
41
  def extract_related_topics(query_list):
42
- combined_query = " ".join(query_list)
43
- doc = nlp(combined_query)
44
 
45
  # Extract keywords or named entities
46
- keywords = [token.text for token in doc if token.is_alpha and not token.is_stop]
47
- entities = [ent.text for ent in doc.ents]
48
 
49
  # Combine and deduplicate keywords and entities
50
- related_topics = list(set(keywords + entities))
51
- related_topics.insert(0,"Deep Learning")
52
- return related_topics[:3] # Limit to 3 related topics
53
 
54
  # Function to display search results and summaries
55
  def display_results(query):
 
2
  import streamlit as st
3
  import requests
4
  from transformers import pipeline
5
+ #import spacy
6
 
7
  # Initialize the summarizer pipeline using Hugging Face Transformers
8
  summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
9
 
10
  # Load spaCy model
11
+ #nlp = spacy.load("en_core_web_sm")
12
 
13
  # Function to perform search using Google Custom Search API
14
  def perform_search(query):
 
39
 
40
  # Function to extract related topics using spaCy
41
  def extract_related_topics(query_list):
42
+ #combined_query = " ".join(query_list)
43
+ #doc = nlp(combined_query)
44
 
45
  # Extract keywords or named entities
46
+ #keywords = [token.text for token in doc if token.is_alpha and not token.is_stop]
47
+ #entities = [ent.text for ent in doc.ents]
48
 
49
  # Combine and deduplicate keywords and entities
50
+ #related_topics = list(set(keywords + entities))
51
+ #related_topics.insert(0,"Deep Learning")
52
+ return ["Machine","AI","GenAI"] # Limit to 3 related topics
53
 
54
  # Function to display search results and summaries
55
  def display_results(query):