import streamlit as st import requests from transformers import pipeline #import spacy # Initialize the summarizer pipeline using Hugging Face Transformers summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Load spaCy model #nlp = spacy.load("en_core_web_sm") # Function to perform search using Google Custom Search API def perform_search(query): api_key = 'AIzaSyAgKac39wfstboizc1StYGjqlT2rdQqVQ4' cx = "7394b4ca2ca1040ef" search_url = f"https://www.googleapis.com/customsearch/v1?q={query}&key={api_key}&cx={cx}" response = requests.get(search_url) return response.json() # Function to summarize the overall combined content (make it longer) def summarize_overall_content(content): if len(content) > 3000: # Summarize up to 3000 characters for a larger summary content = content[:3000] summary = summarizer(content, max_length=300, min_length=100, do_sample=False) # Larger overall summary return summary[0]['summary_text'] # Function to summarize individual search results (keep shorter) def summarize_individual_content(content): if len(content) > 1000: # Summarize first 1000 characters for brevity content = content[:1000] summary = summarizer(content, max_length=50, min_length=30, do_sample=False) # Shorter summary return summary[0]['summary_text'] # Function to rank search results based on custom criteria def rank_sources(results): # For now, assume sources are ranked by default order from API return results # Function to extract related topics using spaCy def extract_related_topics(query_list): #combined_query = " ".join(query_list) #doc = nlp(combined_query) # Extract keywords or named entities #keywords = [token.text for token in doc if token.is_alpha and not token.is_stop] #entities = [ent.text for ent in doc.ents] # Combine and deduplicate keywords and entities #related_topics = list(set(keywords + entities)) #related_topics.insert(0,"Deep Learning") return ["Machine","AI","GenAI"] # Limit to 3 related topics # Function to display search results and summaries def display_results(query): st.write(f"Searching for: {query}") # Perform search and get results search_results = perform_search(query) # Extract relevant items from search results if 'items' in search_results: ranked_results = rank_sources(search_results['items']) ranked_results=ranked_results[:3] # Overall summary (bigger) st.write("### Overall Summary:") combined_content = " ".join([item['snippet'] for item in ranked_results]) overall_summary = summarize_overall_content(combined_content) # Use larger summary function st.write(overall_summary) # Individual results (shorter) st.write("### Individual Results:") for item in ranked_results: st.write(f"**[{item['title']}]({item['link']})**") st.write(summarize_individual_content(item['snippet'])) # Use shorter summary function st.write("---") else: st.write("No results found.") # Main Streamlit App UI st.title("AI-Powered Information Retrieval and Summarization") # Initialize query list to store search queries if 'querylist' not in st.session_state: st.session_state.querylist = [] # Search input by user query = st.text_input("Enter your search query:") # If query is provided, display results and update query list if query: st.session_state.querylist.append(query) display_results(query) # Generate related topics based on query list related_topics = extract_related_topics(st.session_state.querylist) st.write("### Related Topics:") for topic in related_topics: st.write(f"- **[{topic}]({requests.utils.requote_uri(f'https://www.google.com/search?q={topic}')})**") # Trending Topics Section with clickable links st.sidebar.title("Trending Topics") trending_topics = ["AI", "Machine Learning", "Sustainability", "Technology Trends"] for idx, topic in enumerate(trending_topics): if st.sidebar.button(topic, key=f'topic_button_{idx}'): query = topic # Automatically search for this topic when clicked # Feedback Section (Visible after results) if query or any(st.sidebar.button(topic) for topic in trending_topics): st.write("### Feedback") feedback = st.radio("Was this summary helpful?", ["Yes", "No"]) if feedback == "Yes": st.write("Thank you for your feedback!") else: st.write("We will try to improve!")