File size: 45,669 Bytes
7ff1354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
"""



All code contributed to Exifa.net is Β© 2024 by Sahir Maharaj. 

The content is licensed under the Creative Commons Attribution 4.0 International License. 

This allows for sharing and adaptation, provided appropriate credit is given, and any changes made are indicated.



When using the code from Exifa.net, please credit as follows: "Code sourced from Exifa.net, authored by Sahir Maharaj, 2024."



For reporting bugs, requesting features, or further inquiries, please reach out to Sahir Maharaj at sahir@sahirmaharaj.com.



Connect with Sahir Maharaj on LinkedIn for updates and potential collaborations: https://www.linkedin.com/in/sahir-maharaj/



Hire Sahir Maharaj: https://topmate.io/sahirmaharaj/362667

"""

import streamlit as st
import replicate
import os
import pdfplumber
from docx import Document
import pandas as pd
from io import BytesIO
from transformers import AutoTokenizer
import exifread
import requests
from PIL import Image
import numpy as np
import plotly.express as px
import matplotlib.colors as mcolors
import plotly.graph_objs as go
import streamlit.components.v1 as components
import random

config = {
    "toImageButtonOptions": {
        "format": "png",
        "filename": "custom_image",
        "height": 720,
        "width": 480,
        "scale": 6,
    }
}

icons = {
    "assistant": "https://raw.githubusercontent.com/sahirmaharaj/exifa/2f685de7dffb583f2b2a89cb8ee8bc27bf5b1a40/img/assistant-done.svg",
    "user": "https://raw.githubusercontent.com/sahirmaharaj/exifa/2f685de7dffb583f2b2a89cb8ee8bc27bf5b1a40/img/user-done.svg",
}

particles_js = """<!DOCTYPE html>

<html lang="en">

<head>

  <meta charset="UTF-8">

  <meta name="viewport" content="width=device-width, initial-scale=1.0">

  <title>Particles.js</title>

  <style>

  #particles-js {

    position: fixed;

    width: 100vw;

    height: 100vh;

    top: 0;

    left: 0;

    z-index: -1; /* Send the animation to the back */

  }

  .content {

    position: relative;

    z-index: 1;

    color: white;

  }

  

</style>

</head>

<body>

  <div id="particles-js"></div>

  <div class="content">

    <!-- Placeholder for Streamlit content -->

  </div>

  <script src="https://cdn.jsdelivr.net/particles.js/2.0.0/particles.min.js"></script>

  <script>

    particlesJS("particles-js", {

      "particles": {

        "number": {

          "value": 300,

          "density": {

            "enable": true,

            "value_area": 800

          }

        },

        "color": {

          "value": "#ffffff"

        },

        "shape": {

          "type": "circle",

          "stroke": {

            "width": 0,

            "color": "#000000"

          },

          "polygon": {

            "nb_sides": 5

          },

          "image": {

            "src": "img/github.svg",

            "width": 100,

            "height": 100

          }

        },

        "opacity": {

          "value": 0.5,

          "random": false,

          "anim": {

            "enable": false,

            "speed": 1,

            "opacity_min": 0.2,

            "sync": false

          }

        },

        "size": {

          "value": 2,

          "random": true,

          "anim": {

            "enable": false,

            "speed": 40,

            "size_min": 0.1,

            "sync": false

          }

        },

        "line_linked": {

          "enable": true,

          "distance": 100,

          "color": "#ffffff",

          "opacity": 0.22,

          "width": 1

        },

        "move": {

          "enable": true,

          "speed": 0.2,

          "direction": "none",

          "random": false,

          "straight": false,

          "out_mode": "out",

          "bounce": true,

          "attract": {

            "enable": false,

            "rotateX": 600,

            "rotateY": 1200

          }

        }

      },

      "interactivity": {

        "detect_on": "canvas",

        "events": {

          "onhover": {

            "enable": true,

            "mode": "grab"

          },

          "onclick": {

            "enable": true,

            "mode": "repulse"

          },

          "resize": true

        },

        "modes": {

          "grab": {

            "distance": 100,

            "line_linked": {

              "opacity": 1

            }

          },

          "bubble": {

            "distance": 400,

            "size": 2,

            "duration": 2,

            "opacity": 0.5,

            "speed": 1

          },

          "repulse": {

            "distance": 200,

            "duration": 0.4

          },

          "push": {

            "particles_nb": 2

          },

          "remove": {

            "particles_nb": 3

          }

        }

      },

      "retina_detect": true

    });

  </script>

</body>

</html>

"""

st.set_page_config(page_title="Exifa.net", page_icon="✨", layout="wide")

welcome_messages = [
    "Hello! I'm Exifa, an AI assistant designed to make image metadata meaningful. Ask me anything!",
    "Hi! I'm Exifa, an AI-powered assistant for extracting and explaining EXIF data. How can I help you today?",
    "Hey! I'm Exifa, your AI-powered guide to understanding the metadata in your images. What would you like to explore?",
    "Hi there! I'm Exifa, an AI-powered tool built to help you make sense of your image metadata. How can I help you today?",
    "Hello! I'm Exifa, an AI-driven tool designed to help you understand your images' metadata. What can I do for you?",
    "Hi! I'm Exifa, an AI-driven assistant designed to make EXIF data easy to understand. How can I help you today?",
    "Welcome! I'm Exifa, an intelligent AI-powered tool for extracting and explaining EXIF data. How can I assist you today?",
    "Hello! I'm Exifa, your AI-powered guide for understanding image metadata. Ask me anything!",
    "Hi! I'm Exifa, an intelligent AI assistant ready to help you understand your images' metadata. What would you like to explore?",
    "Hey! I'm Exifa, an AI assistant for extracting and explaining EXIF data. How can I help you today?",
]

message = random.choice(welcome_messages)

if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "assistant", "content": message}]
if "exif_df" not in st.session_state:
    st.session_state["exif_df"] = pd.DataFrame()
if "url_exif_df" not in st.session_state:
    st.session_state["url_exif_df"] = pd.DataFrame()
if "show_expanders" not in st.session_state:
    st.session_state.show_expanders = True
if "reset_trigger" not in st.session_state:
    st.session_state.reset_trigger = False
if "uploaded_files" not in st.session_state:
    st.session_state["uploaded_files"] = None
if "image_url" not in st.session_state:
    st.session_state["image_url"] = ""
if "follow_up" not in st.session_state:
    st.session_state.follow_up = False
if "show_animation" not in st.session_state:
    st.session_state.show_animation = True


def clear_url():
    st.session_state["image_url"] = ""


def clear_files():
    st.session_state["uploaded_files"] = None
    st.session_state["file_uploader_key"] = not st.session_state.get(
        "file_uploader_key", False
    )


def download_image(data):
    st.download_button(
        label="⇩ Download Image",
        data=data,
        file_name="image_no_exif.jpg",
        mime="image/jpeg",
    )


def clear_chat_history():

    st.session_state.reset_trigger = not st.session_state.reset_trigger
    st.session_state.show_expanders = True

    st.session_state.show_animation = True

    st.session_state.messages = [{"role": "assistant", "content": message}]

    st.session_state["exif_df"] = pd.DataFrame()
    st.session_state["url_exif_df"] = pd.DataFrame()
    uploaded_files = ""

    if "uploaded_files" in st.session_state:
        del st.session_state["uploaded_files"]
    if "image_url" in st.session_state:
        st.session_state["image_url"] = ""
    st.cache_data.clear()

    st.success("Chat History Cleared!")


def clear_exif_data(image_input):
    if isinstance(image_input, BytesIO):
        image_input.seek(0)
        image = Image.open(image_input)
    elif isinstance(image_input, Image.Image):
        image = image_input
    else:
        raise ValueError("Unsupported image input type")
    data = list(image.getdata())
    image_without_exif = Image.new(image.mode, image.size)
    image_without_exif.putdata(data)

    buffered = BytesIO()
    image_without_exif.save(buffered, format="JPEG", quality=100, optimize=True)
    buffered.seek(0)
    return buffered.getvalue()


with st.sidebar:

    image_url = (
        "https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/Exifa.gif"
    )

    st.markdown(
        f"""

        <div style='display: flex; align-items: center;'>

            <img src='{image_url}' style='width: 50px; height: 50px; margin-right: 30px;'>

            <h1 style='margin: 0;'>Exifa.net</h1>

        </div>

        """,
        unsafe_allow_html=True,
    )

    expander = st.expander("πŸ—€ File Input")
    with expander:

        image_url = st.text_input(
            "Enter image URL for EXIF analysis:",
            key="image_url",
            on_change=clear_files,
            value=st.session_state.image_url,
        )

        file_uploader_key = "file_uploader_{}".format(
            st.session_state.get("file_uploader_key", False)
        )

        uploaded_files = st.file_uploader(
            "Upload local files:",
            type=["txt", "pdf", "docx", "csv", "jpg", "png", "jpeg"],
            key=file_uploader_key,
            on_change=clear_url,
            accept_multiple_files=True,
        )

        if uploaded_files is not None:
            st.session_state["uploaded_files"] = uploaded_files
    expander = st.expander("βš’ Model Configuration")
    with expander:

        if "REPLICATE_API_TOKEN" in st.secrets:
            replicate_api = st.secrets["REPLICATE_API_TOKEN"]
        else:
            replicate_api = st.text_input("Enter Replicate API token:", type="password")
            if not (replicate_api.startswith("r8_") and len(replicate_api) == 40):
                st.warning("Please enter your Replicate API token.", icon="⚠️")
                st.markdown(
                    "**Don't have an API token?** Head over to [Replicate](https://replicate.com/account/api-tokens) to sign up for one."
                )
        os.environ["REPLICATE_API_TOKEN"] = replicate_api
        st.subheader("Adjust model parameters")
        temperature = st.slider(
            "Temperature", min_value=0.01, max_value=5.0, value=0.3, step=0.01
        )
        top_p = st.slider("Top P", min_value=0.01, max_value=1.0, value=0.2, step=0.01)
        max_new_tokens = st.number_input(
            "Max New Tokens", min_value=1, max_value=1024, value=512
        )
        min_new_tokens = st.number_input(
            "Min New Tokens", min_value=0, max_value=512, value=0
        )
        presence_penalty = st.slider(
            "Presence Penalty", min_value=0.0, max_value=2.0, value=1.15, step=0.05
        )
        frequency_penalty = st.slider(
            "Frequency Penalty", min_value=0.0, max_value=2.0, value=0.2, step=0.05
        )
        stop_sequences = st.text_area("Stop Sequences", value="<|im_end|>", height=100)
    if uploaded_files and not st.session_state["exif_df"].empty:
        with st.expander("πŸ— EXIF Details"):
            st.dataframe(st.session_state["exif_df"])
    if image_url and not st.session_state["url_exif_df"].empty:
        with st.expander("πŸ— EXIF Details"):
            st.dataframe(st.session_state["url_exif_df"])
    base_prompt = """

    

    You are an expert EXIF Analyser. The user will provide an image file and you will explain the file EXIF in verbose detail.

    

    Pay careful attention to the data of the EXIF image and create a profile for the user who took this image. 

    

    1. Make inferences on things like location, budget, experience, etc. (2 paragraphs) 

    2. Make as many inferences as possible about the exif data in the next 3 paragraphs.

    

    3. Please follow this format, style, pacing and structure. 

    4. In addition to the content above, provide 1 more paragraph about the users financial standing based on the equipment they are using and estimate their experience.

    

    DO NOT skip any steps.

    

    FORMAT THE RESULT IN MULTIPLE PARAGRAPHS

    

    Do not keep talking and rambling on - Get to the point. 

    

    """

    if uploaded_files:
        for uploaded_file in uploaded_files:
            if uploaded_file.type == "application/pdf":
                with pdfplumber.open(uploaded_file) as pdf:
                    pages = [page.extract_text() for page in pdf.pages]
                file_text = "\n".join(pages) if pages else ""
            elif uploaded_file.type == "text/plain":
                file_text = str(uploaded_file.read(), "utf-8")
            elif (
                uploaded_file.type
                == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
            ):
                doc = Document(uploaded_file)
                file_text = "\n".join([para.text for para in doc.paragraphs])
            elif uploaded_file.type == "text/csv":
                df = pd.read_csv(uploaded_file)
                file_text = df.to_string(index=False)
            elif uploaded_file.type in ["image/jpeg", "image/png", "image/jpg"]:
                import tempfile

                with tempfile.NamedTemporaryFile(delete=False) as temp:
                    temp.write(uploaded_file.read())
                    temp.flush()
                    temp.close()
                    with open(temp.name, "rb") as file:
                        tags = exifread.process_file(file)
                    exif_data = {}
                    for tag in tags.keys():
                        if tag not in [
                            "JPEGThumbnail",
                            "TIFFThumbnail",
                            "Filename",
                            "EXIF MakerNote",
                        ]:
                            exif_data[tag] = str(tags[tag])
                    df = pd.DataFrame(exif_data, index=[0])
                    df.insert(loc=0, column="Image Feature", value=["Value"] * len(df))
                    df = df.transpose()
                    df.columns = df.iloc[0]
                    df = df.iloc[1:]

                    st.session_state["exif_df"] = df

                    file_text = "\n".join(
                        [
                            f"{tag}: {tags[tag]}"
                            for tag in tags.keys()
                            if tag
                            not in (
                                "JPEGThumbnail",
                                "TIFFThumbnail",
                                "Filename",
                                "EXIF MakerNote",
                            )
                        ]
                    )
                    os.unlink(temp.name)
            base_prompt += "\n" + file_text
    if image_url:
        try:
            response = requests.head(image_url)
            if response.headers["Content-Type"] in [
                "image/jpeg",
                "image/png",
                "image/jpg",
            ]:
                response = requests.get(image_url)
                response.raise_for_status()
                image_data = BytesIO(response.content)
                image = Image.open(image_data)
                image.load()

                tags = exifread.process_file(image_data)

                exif_data = {}
                for tag in tags.keys():
                    if tag not in [
                        "JPEGThumbnail",
                        "TIFFThumbnail",
                        "Filename",
                        "EXIF MakerNote",
                    ]:
                        exif_data[tag] = str(tags[tag])
                df = pd.DataFrame(exif_data, index=[0])
                df.insert(loc=0, column="Image Feature", value=["Value"] * len(df))
                df = df.transpose()
                df.columns = df.iloc[0]
                df = df.iloc[1:]

                st.session_state["url_exif_df"] = df

                file_text = "\n".join(
                    [
                        f"{tag}: {tags[tag]}"
                        for tag in tags.keys()
                        if tag
                        not in (
                            "JPEGThumbnail",
                            "TIFFThumbnail",
                            "Filename",
                            "EXIF MakerNote",
                        )
                    ]
                )
                base_prompt += "\n" + file_text
            else:

                pass
        except requests.RequestException:

            pass

        def load_image(file):
            if isinstance(file, str):
                response = requests.get(file)
                response.raise_for_status()
                return Image.open(BytesIO(response.content))
            elif isinstance(file, bytes):
                return Image.open(BytesIO(file))
            else:
                return Image.open(file)

        uploaded_file = image

        with st.expander("⛆ RGB Channel"):

            def get_channel_image(image, channels):

                data = np.array(image)

                channel_data = np.zeros_like(data)

                for channel in channels:
                    channel_data[:, :, channel] = data[:, :, channel]
                return Image.fromarray(channel_data)

            channels = st.multiselect(
                "Select channels:",
                ["Red", "Green", "Blue"],
                default=["Red", "Green", "Blue"],
            )

            if channels:
                channel_indices = [
                    0 if channel == "Red" else 1 if channel == "Green" else 2
                    for channel in channels
                ]
                combined_image = get_channel_image(image, channel_indices)
                st.image(combined_image, use_column_width=True)
            else:
                st.image(image, use_column_width=True)
        with st.expander("γ€½ HSV Distribution"):

            def get_hsv_histogram(image):

                hsv_image = image.convert("HSV")
                data = np.array(hsv_image)

                hue_hist, _ = np.histogram(data[:, :, 0], bins=256, range=(0, 256))
                saturation_hist, _ = np.histogram(
                    data[:, :, 1], bins=256, range=(0, 256)
                )
                value_hist, _ = np.histogram(data[:, :, 2], bins=256, range=(0, 256))

                histogram_df = pd.DataFrame(
                    {
                        "Hue": hue_hist,
                        "Saturation": saturation_hist,
                        "Value": value_hist,
                    }
                )

                return histogram_df

            hsv_histogram_df = get_hsv_histogram(image)

            st.line_chart(hsv_histogram_df)
        with st.expander("β˜„ Color Distribution"):
            if image_url:
                image = load_image(image_url)
                if image:

                    def color_distribution_sunburst(data):
                        data = np.array(data)
                        red, green, blue = data[:, :, 0], data[:, :, 1], data[:, :, 2]
                        color_intensity = {"color": [], "intensity": [], "count": []}
                        for name, channel in zip(
                            ["Red", "Green", "Blue"], [red, green, blue]
                        ):
                            unique, counts = np.unique(channel, return_counts=True)
                            color_intensity["color"].extend([name] * len(unique))
                            color_intensity["intensity"].extend(unique)
                            color_intensity["count"].extend(counts)
                        df = pd.DataFrame(color_intensity)
                        fig = px.sunburst(
                            df,
                            path=["color", "intensity"],
                            values="count",
                            color="color",
                            color_discrete_map={
                                "Red": "#ff6666",
                                "Green": "#85e085",
                                "Blue": "#6666ff",
                            },
                        )
                        return fig

                    fig = color_distribution_sunburst(image)
                    st.plotly_chart(fig, use_container_width=True)
        with st.expander("πŸ•Έ 3D Color Space"):

            def plot_3d_color_space(data, skip_factor):
                sample = data[::skip_factor, ::skip_factor].reshape(-1, 3)

                normalized_colors = sample / 255.0

                trace = go.Scatter3d(
                    x=sample[:, 0],
                    y=sample[:, 1],
                    z=sample[:, 2],
                    mode="markers",
                    marker=dict(
                        size=5,
                        color=["rgb({},{},{})".format(r, g, b) for r, g, b in sample],
                        opacity=0.8,
                    ),
                )
                layout = go.Layout(
                    scene=dict(
                        xaxis=dict(title="Red"),
                        yaxis=dict(title="Green"),
                        zaxis=dict(title="Blue"),
                        camera=dict(eye=dict(x=1.25, y=1.25, z=1.25)),
                    ),
                    margin=dict(l=0, r=0, b=0, t=30),
                )
                fig = go.Figure(data=[trace], layout=layout)
                return fig

            skip_factor = 8

            if isinstance(uploaded_file, Image.Image):
                data = np.array(uploaded_file)
            else:
                data = np.array(Image.open(uploaded_file))
            fig = plot_3d_color_space(data, skip_factor)
            st.plotly_chart(fig, use_container_width=True, config=config)
        with st.expander("‏𖦹 Pixel Density Polar"):

            def pixel_density_polar_plot(image):
                image_data = np.array(image)
                hsv_data = mcolors.rgb_to_hsv(image_data / 255.0)
                hue = hsv_data[:, :, 0].flatten()

                hist, bins = np.histogram(hue, bins=360, range=(0, 1))
                theta = np.linspace(0, 360, len(hist), endpoint=False)

                fig = px.bar_polar(
                    r=hist,
                    theta=theta,
                    template="seaborn",
                    color_discrete_sequence=["red"],
                )
                fig.update_traces(marker=dict(line=dict(color="red", width=1)))
                fig.update_layout()

                return fig

            if uploaded_file is not None:
                if isinstance(uploaded_file, Image.Image):
                    image = uploaded_file
                else:
                    image = Image.open(uploaded_file)
                fig = pixel_density_polar_plot(image)
                st.plotly_chart(fig, use_container_width=True, config=config)
        with st.expander("α¨’ 3D Surface (Color Intensities)"):

            def surface_plot_image_intensity(data):
                intensity = np.mean(data, axis=2)
                sample_size = int(intensity.shape[0] * 0.35)
                intensity_sample = intensity[:sample_size, :sample_size]
                fig = go.Figure(
                    data=[go.Surface(z=intensity_sample, colorscale="Viridis")]
                )
                fig.update_layout(autosize=True)
                return fig

            if isinstance(uploaded_file, Image.Image):
                data = np.array(uploaded_file)
            else:
                data = np.array(Image.open(uploaded_file))
            fig = surface_plot_image_intensity(data)
            st.plotly_chart(fig, use_container_width=True, config=config)
        with st.expander("πŸ–Œ Color Palette"):

            def extract_color_palette(image, num_colors=6):
                image = image.resize((100, 100))
                result = image.quantize(colors=num_colors)
                palette = result.getpalette()
                color_counts = result.getcolors()

                colors = [palette[i * 3 : (i + 1) * 3] for i in range(num_colors)]
                counts = [
                    count
                    for count, _ in sorted(
                        color_counts, reverse=True, key=lambda x: x[0]
                    )
                ]
                return colors, counts

            def plot_color_palette(colors, counts):
                fig = go.Figure()
                for i, (color, count) in enumerate(zip(colors, counts)):
                    hex_color = "#%02x%02x%02x" % tuple(color)
                    fig.add_trace(
                        go.Bar(
                            x=[1],
                            y=[hex_color],
                            orientation="h",
                            marker=dict(color=hex_color),
                            hoverinfo="text",
                            hovertext=f"<b>HEX:</b> {hex_color}<br><b>Count:</b> {count}",
                            name="",
                        )
                    )
                fig.update_layout(
                    xaxis=dict(showticklabels=False),
                    yaxis=dict(showticklabels=True),
                    showlegend=False,
                    template="plotly_dark",
                    height=400,
                )
                return fig

            num_colors = st.slider("Number of Colors", 2, 10, 6)

            if isinstance(uploaded_file, Image.Image):
                image = uploaded_file.convert("RGB")
            else:
                image = Image.open(uploaded_file).convert("RGB")
            colors, counts = extract_color_palette(image, num_colors)
            fig = plot_color_palette(colors, counts)
            st.plotly_chart(fig, use_container_width=True, config=config)
        if uploaded_file is not None:
            col1, col2 = st.columns(2)
            clean_img = clear_exif_data(image)
            with col1:
                st.button("πŸ—‘ Clear Chat History", on_click=clear_chat_history)
            with col2:
                download_image(clean_img)
        st.session_state.reset_trigger = True
    if st.session_state.show_expanders:

        if uploaded_files and not st.session_state["exif_df"].empty:

            with st.expander("⛆ RGB Channel"):

                for uploaded_file in uploaded_files:
                    if uploaded_file.type in ["image/jpeg", "image/png", "image/jpg"]:

                        def load_image(image_file):
                            return Image.open(image_file)

                        image = load_image(uploaded_file)

                def get_channel_image(image, channels):
                    data = np.array(image)

                    channel_data = np.zeros_like(data)

                    for channel in channels:
                        channel_data[:, :, channel] = data[:, :, channel]
                    return Image.fromarray(channel_data)

                channels = st.multiselect(
                    "Select channels:",
                    ["Red", "Green", "Blue"],
                    default=["Red", "Green", "Blue"],
                )

                if channels:
                    channel_indices = [
                        0 if channel == "Red" else 1 if channel == "Green" else 2
                        for channel in channels
                    ]
                    combined_image = get_channel_image(image, channel_indices)
                    st.image(combined_image, use_column_width=True)
                else:
                    st.image(image, use_column_width=True)
            with st.expander("γ€½ HSV Distribution"):

                def get_hsv_histogram(image):
                    hsv_image = image.convert("HSV")
                    data = np.array(hsv_image)

                    hue_hist, _ = np.histogram(data[:, :, 0], bins=256, range=(0, 256))
                    saturation_hist, _ = np.histogram(
                        data[:, :, 1], bins=256, range=(0, 256)
                    )
                    value_hist, _ = np.histogram(
                        data[:, :, 2], bins=256, range=(0, 256)
                    )

                    histogram_df = pd.DataFrame(
                        {
                            "Hue": hue_hist,
                            "Saturation": saturation_hist,
                            "Value": value_hist,
                        }
                    )

                    return histogram_df

                hsv_histogram_df = get_hsv_histogram(image)

                st.line_chart(hsv_histogram_df)
            with st.expander("β˜„ Color Distribution"):

                def color_distribution_sunburst(data):
                    data = np.array(data)

                    red, green, blue = data[:, :, 0], data[:, :, 1], data[:, :, 2]
                    color_intensity = {"color": [], "intensity": [], "count": []}
                    for name, channel in zip(
                        ["Red", "Green", "Blue"], [red, green, blue]
                    ):
                        unique, counts = np.unique(channel, return_counts=True)
                        color_intensity["color"].extend([name] * len(unique))
                        color_intensity["intensity"].extend(unique)
                        color_intensity["count"].extend(counts)
                    df = pd.DataFrame(color_intensity)
                    fig = px.sunburst(
                        df,
                        path=["color", "intensity"],
                        values="count",
                        color="color",
                        color_discrete_map={
                            "Red": "#ff6666",
                            "Green": "#85e085",
                            "Blue": "#6666ff",
                        },
                    )
                    return fig

                image = load_image(uploaded_file)
                fig = color_distribution_sunburst(image)
                st.plotly_chart(fig, use_container_width=True, config=config)
            with st.expander("πŸ•Έ 3D Color Space"):

                def plot_3d_color_space(data, skip_factor):
                    sample = data[::skip_factor, ::skip_factor].reshape(-1, 3)

                    normalized_colors = sample / 255.0

                    trace = go.Scatter3d(
                        x=sample[:, 0],
                        y=sample[:, 1],
                        z=sample[:, 2],
                        mode="markers",
                        marker=dict(
                            size=5,
                            color=[
                                "rgb({},{},{})".format(r, g, b) for r, g, b in sample
                            ],
                            opacity=0.8,
                        ),
                    )
                    layout = go.Layout(
                        scene=dict(
                            xaxis=dict(title="Red"),
                            yaxis=dict(title="Green"),
                            zaxis=dict(title="Blue"),
                            camera=dict(eye=dict(x=1.25, y=1.25, z=1.25)),
                        ),
                        margin=dict(l=0, r=0, b=0, t=30),
                    )
                    fig = go.Figure(data=[trace], layout=layout)
                    return fig

                skip_factor = 8

                data = np.array(Image.open(uploaded_file))
                fig = plot_3d_color_space(data, skip_factor)
                st.plotly_chart(fig, use_container_width=True, config=config)
            with st.expander("π–¦Ή Pixel Density Polar"):

                def pixel_density_polar_plot(data):
                    image_data = np.array(Image.open(data))
                    hsv_data = mcolors.rgb_to_hsv(image_data / 255.0)
                    hue = hsv_data[:, :, 0].flatten()

                    hist, bins = np.histogram(hue, bins=360, range=(0, 1))
                    theta = np.linspace(0, 360, len(hist), endpoint=False)

                    fig = px.bar_polar(
                        r=hist,
                        theta=theta,
                        template="seaborn",
                        color_discrete_sequence=["red"],
                    )
                    fig.update_traces(marker=dict(line=dict(color="red", width=1)))
                    fig.update_layout()

                    return fig

                if uploaded_file is not None:
                    fig = pixel_density_polar_plot(uploaded_file)
                    st.plotly_chart(fig, use_container_width=True, config=config)
            with st.expander("α¨’ 3D Surface (Color Intensities)"):

                def surface_plot_image_intensity(data):
                    intensity = np.mean(data, axis=2)
                    sample_size = int(intensity.shape[0] * 0.35)
                    intensity_sample = intensity[:sample_size, :sample_size]
                    fig = go.Figure(
                        data=[go.Surface(z=intensity_sample, colorscale="Viridis")]
                    )
                    fig.update_layout(autosize=True)
                    return fig

                data = np.array(Image.open(uploaded_file))
                fig = surface_plot_image_intensity(data)

                st.plotly_chart(fig, use_container_width=True, config=config)
            with st.expander("πŸ–Œ Color Palette"):

                def extract_color_palette(image, num_colors=6):
                    image = image.resize((100, 100))
                    result = image.quantize(colors=num_colors)
                    palette = result.getpalette()
                    color_counts = result.getcolors()

                    colors = [palette[i * 3 : (i + 1) * 3] for i in range(num_colors)]
                    counts = [
                        count
                        for count, _ in sorted(
                            color_counts, reverse=True, key=lambda x: x[0]
                        )
                    ]

                    return colors, counts

                def plot_color_palette(colors, counts):
                    fig = go.Figure()
                    for i, (color, count) in enumerate(zip(colors, counts)):
                        hex_color = "#%02x%02x%02x" % tuple(color)
                        fig.add_trace(
                            go.Bar(
                                x=[1],
                                y=[hex_color],
                                orientation="h",
                                marker=dict(color=hex_color),
                                hoverinfo="text",
                                hovertext=f"<b>HEX:</b> {hex_color}<br><b>Count:</b> {count}",
                                name="",
                            )
                        )
                    fig.update_layout(
                        xaxis=dict(showticklabels=False),
                        yaxis=dict(showticklabels=True),
                        showlegend=False,
                        template="plotly_dark",
                        height=400,
                    )
                    return fig

                num_colors = st.slider("Number of Colors", 2, 10, 6)
                image = Image.open(uploaded_file).convert("RGB")
                colors, counts = extract_color_palette(image, num_colors)
                fig = plot_color_palette(colors, counts)
                st.plotly_chart(fig, use_container_width=True, config=config)
            st.session_state.reset_trigger = True

            col1, col2 = st.columns(2)
            with col1:
                st.button("πŸ—‘ Clear Chat History", on_click=clear_chat_history)
            with col2:
                clear = clear_exif_data(image)
                download_image(clear)


@st.experimental_dialog("How to use Exifa.net", width=1920)
def show_video(item):
    video_url = "https://www.youtube.com/watch?v=CS7rkWu7LNY"
    st.video(video_url, loop=False, autoplay=True, muted=False)


for message in st.session_state.messages:
    with st.chat_message(message["role"], avatar=icons[message["role"]]):
        st.write(message["content"])
        if message == st.session_state["messages"][0]:
            if st.button("How can I use Exifa?"):
                show_video("")
st.sidebar.caption(
    "Built by [Sahir Maharaj](https://www.linkedin.com/in/sahir-maharaj/). Like this? [Hire me!](https://topmate.io/sahirmaharaj/362667)"
)

linkedin = "https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/linkedin.gif"
topmate = "https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/topmate.gif"
email = "https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/email.gif"
newsletter = (
    "https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/newsletter.gif"
)
share = "https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/share.gif"

uptime = "https://uptime.betterstack.com/status-badges/v1/monitor/196o6.svg"

st.sidebar.caption(
    f"""

        <div style='display: flex; align-items: center;'>

            <a href = 'https://www.linkedin.com/in/sahir-maharaj/'><img src='{linkedin}' style='width: 35px; height: 35px; margin-right: 25px;'></a>

            <a href = 'https://topmate.io/sahirmaharaj/362667'><img src='{topmate}' style='width: 32px; height: 32px; margin-right: 25px;'></a>

            <a href = 'mailto:sahir@sahirmaharaj.com'><img src='{email}' style='width: 28px; height: 28px; margin-right: 25px;'></a>

            <a href = 'https://www.linkedin.com/build-relation/newsletter-follow?entityUrn=7163516439096733696'><img src='{newsletter}' style='width: 28px; height: 28px; margin-right: 25px;'></a>

            <a href = 'https://www.kaggle.com/sahirmaharajj'><img src='{share}' style='width: 28px; height: 28px; margin-right: 25px;'></a>

            

        </div>

        <br>

        <a href = 'https://exifa.betteruptime.com/'><img src='{uptime}'></a>

        &nbsp; <a href="https://www.producthunt.com/posts/exifa-net?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-exifa&#0045;net" target="_blank"><img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=474560&theme=dark" alt="Exifa&#0046;net - Your&#0032;AI&#0032;assistant&#0032;for&#0032;understanding&#0032;EXIF&#0032;data | Product Hunt" style="width: 125px; height: 27px;" width="125" height="27" /></a>

        

        """,
    unsafe_allow_html=True,
)


@st.cache_resource(show_spinner=False)
def get_tokenizer():
    return AutoTokenizer.from_pretrained("huggyllama/llama-7b")


def get_num_tokens(prompt):
    tokenizer = get_tokenizer()
    tokens = tokenizer.tokenize(prompt)
    return len(tokens)


def generate_arctic_response_follow_up():

    follow_up_response = ""

    last_three_messages = st.session_state.messages[-3:]
    for message in last_three_messages:
        follow_up_response += "\n\n {}".format(message)
    prompt = [
        "Please generate one question based on the conversation thus far that the user might ask next. Ensure the question is short, less than 8 words, stays on the topic of EXIF and its importance and dangers, and is formatted with underscores instead of spaces, e.g., What_does_EXIF_mean? Conversation Info = {}. Please generate one question based on the conversation thus far that the user might ask next. Ensure the question is short, less than 8 words, stays on the topic of EXIF and its importance and dangers, and is formatted with underscores instead of spaces".format(
            follow_up_response
        )
    ]
    prompt.append("assistant\n")
    prompt_str = "\n".join(prompt)

    full_response = []
    for event in replicate.stream(
        "snowflake/snowflake-arctic-instruct",
        input={
            "prompt": prompt_str,
            "prompt_template": r"{prompt}",
            "temperature": temperature,
            "top_p": top_p,
            "max_new_tokens": max_new_tokens,
            "min_new_tokens": min_new_tokens,
            "presence_penalty": presence_penalty,
            "frequency_penalty": frequency_penalty,
            "stop_sequences": stop_sequences,
        },
    ):
        full_response.append(str(event).strip())
    complete_response = "".join(full_response)

    return complete_response


def generate_arctic_response():

    prompt = [base_prompt] if base_prompt else []
    for dict_message in st.session_state.messages:
        if dict_message["role"] == "user":
            prompt.append("user\n" + dict_message["content"])
        else:
            prompt.append("assistant\n" + dict_message["content"])
    prompt.append("assistant\n")
    prompt_str = "\n".join(prompt)

    if get_num_tokens(prompt_str) >= 1000000:
        st.error("Conversation length too long. Please keep it under 1000000 tokens.")
        st.button(
            "πŸ—‘ Clear Chat History",
            on_click=clear_chat_history,
            key="clear_chat_history",
        )
        st.stop()
    for event in replicate.stream(
        "snowflake/snowflake-arctic-instruct",
        input={
            "prompt": prompt_str,
            "prompt_template": r"{prompt}",
            "temperature": temperature,
            "top_p": top_p,
            "max_new_tokens": max_new_tokens,
            "min_new_tokens": min_new_tokens,
            "presence_penalty": presence_penalty,
            "frequency_penalty": frequency_penalty,
            "stop_sequences": stop_sequences,
        },
    ):
        yield str(event)


def display_question():
    st.session_state.follow_up = True


if prompt := st.chat_input(disabled=not replicate_api):

    st.session_state.show_animation = False

    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message(
        "user",
        avatar="https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/user.gif",
    ):
        st.write(prompt)
if st.session_state.follow_up:

    st.session_state.show_animation = False

    unique_key = "chat_input_" + str(hash("Snowflake Arctic is cool"))

    complete_question = generate_arctic_response_follow_up()
    formatted_question = complete_question.replace("_", " ").strip()

    st.session_state.messages.append({"role": "user", "content": formatted_question})
    with st.chat_message(
        "user",
        avatar="https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/user.gif",
    ):
        st.write(formatted_question)
    st.session_state.follow_up = False

    with st.chat_message(
        "assistant",
        avatar="https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/assistant.gif",
    ):
        response = generate_arctic_response()
        full_response = st.write_stream(response)
        message = {"role": "assistant", "content": full_response}

        st.session_state.messages.append(message)

        full_response_prompt = generate_arctic_response_follow_up()
        message_prompt = {"content": full_response_prompt}
        st.button(
            str(message_prompt["content"]).replace("_", " ").strip(),
            on_click=display_question,
        )
if st.session_state.messages[-1]["role"] != "assistant":

    st.session_state.show_animation = False

    with st.chat_message(
        "assistant",
        avatar="https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/assistant.gif",
    ):
        response = generate_arctic_response()
        full_response = st.write_stream(response)
        message = {"role": "assistant", "content": full_response}

        full_response_prompt = generate_arctic_response_follow_up()
        message_prompt = {"content": full_response_prompt}
        st.button(
            str(message_prompt["content"]).replace("_", " ").strip(),
            on_click=display_question,
        )

        st.session_state.messages.append(message)
if st.session_state.reset_trigger:

    unique_key = "chat_input_" + str(hash("Snowflake Arctic is cool"))

    complete_question = generate_arctic_response_follow_up()

    st.session_state.show_animation = False
if "has_snowed" not in st.session_state:

    st.snow()
    st.session_state["has_snowed"] = True
if st.session_state.show_animation:
    components.html(particles_js, height=370, scrolling=False)