Spaces:
Configuration error
Configuration error
File size: 45,669 Bytes
7ff1354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 |
"""
All code contributed to Exifa.net is Β© 2024 by Sahir Maharaj.
The content is licensed under the Creative Commons Attribution 4.0 International License.
This allows for sharing and adaptation, provided appropriate credit is given, and any changes made are indicated.
When using the code from Exifa.net, please credit as follows: "Code sourced from Exifa.net, authored by Sahir Maharaj, 2024."
For reporting bugs, requesting features, or further inquiries, please reach out to Sahir Maharaj at sahir@sahirmaharaj.com.
Connect with Sahir Maharaj on LinkedIn for updates and potential collaborations: https://www.linkedin.com/in/sahir-maharaj/
Hire Sahir Maharaj: https://topmate.io/sahirmaharaj/362667
"""
import streamlit as st
import replicate
import os
import pdfplumber
from docx import Document
import pandas as pd
from io import BytesIO
from transformers import AutoTokenizer
import exifread
import requests
from PIL import Image
import numpy as np
import plotly.express as px
import matplotlib.colors as mcolors
import plotly.graph_objs as go
import streamlit.components.v1 as components
import random
config = {
"toImageButtonOptions": {
"format": "png",
"filename": "custom_image",
"height": 720,
"width": 480,
"scale": 6,
}
}
icons = {
"assistant": "https://raw.githubusercontent.com/sahirmaharaj/exifa/2f685de7dffb583f2b2a89cb8ee8bc27bf5b1a40/img/assistant-done.svg",
"user": "https://raw.githubusercontent.com/sahirmaharaj/exifa/2f685de7dffb583f2b2a89cb8ee8bc27bf5b1a40/img/user-done.svg",
}
particles_js = """<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Particles.js</title>
<style>
#particles-js {
position: fixed;
width: 100vw;
height: 100vh;
top: 0;
left: 0;
z-index: -1; /* Send the animation to the back */
}
.content {
position: relative;
z-index: 1;
color: white;
}
</style>
</head>
<body>
<div id="particles-js"></div>
<div class="content">
<!-- Placeholder for Streamlit content -->
</div>
<script src="https://cdn.jsdelivr.net/particles.js/2.0.0/particles.min.js"></script>
<script>
particlesJS("particles-js", {
"particles": {
"number": {
"value": 300,
"density": {
"enable": true,
"value_area": 800
}
},
"color": {
"value": "#ffffff"
},
"shape": {
"type": "circle",
"stroke": {
"width": 0,
"color": "#000000"
},
"polygon": {
"nb_sides": 5
},
"image": {
"src": "img/github.svg",
"width": 100,
"height": 100
}
},
"opacity": {
"value": 0.5,
"random": false,
"anim": {
"enable": false,
"speed": 1,
"opacity_min": 0.2,
"sync": false
}
},
"size": {
"value": 2,
"random": true,
"anim": {
"enable": false,
"speed": 40,
"size_min": 0.1,
"sync": false
}
},
"line_linked": {
"enable": true,
"distance": 100,
"color": "#ffffff",
"opacity": 0.22,
"width": 1
},
"move": {
"enable": true,
"speed": 0.2,
"direction": "none",
"random": false,
"straight": false,
"out_mode": "out",
"bounce": true,
"attract": {
"enable": false,
"rotateX": 600,
"rotateY": 1200
}
}
},
"interactivity": {
"detect_on": "canvas",
"events": {
"onhover": {
"enable": true,
"mode": "grab"
},
"onclick": {
"enable": true,
"mode": "repulse"
},
"resize": true
},
"modes": {
"grab": {
"distance": 100,
"line_linked": {
"opacity": 1
}
},
"bubble": {
"distance": 400,
"size": 2,
"duration": 2,
"opacity": 0.5,
"speed": 1
},
"repulse": {
"distance": 200,
"duration": 0.4
},
"push": {
"particles_nb": 2
},
"remove": {
"particles_nb": 3
}
}
},
"retina_detect": true
});
</script>
</body>
</html>
"""
st.set_page_config(page_title="Exifa.net", page_icon="β¨", layout="wide")
welcome_messages = [
"Hello! I'm Exifa, an AI assistant designed to make image metadata meaningful. Ask me anything!",
"Hi! I'm Exifa, an AI-powered assistant for extracting and explaining EXIF data. How can I help you today?",
"Hey! I'm Exifa, your AI-powered guide to understanding the metadata in your images. What would you like to explore?",
"Hi there! I'm Exifa, an AI-powered tool built to help you make sense of your image metadata. How can I help you today?",
"Hello! I'm Exifa, an AI-driven tool designed to help you understand your images' metadata. What can I do for you?",
"Hi! I'm Exifa, an AI-driven assistant designed to make EXIF data easy to understand. How can I help you today?",
"Welcome! I'm Exifa, an intelligent AI-powered tool for extracting and explaining EXIF data. How can I assist you today?",
"Hello! I'm Exifa, your AI-powered guide for understanding image metadata. Ask me anything!",
"Hi! I'm Exifa, an intelligent AI assistant ready to help you understand your images' metadata. What would you like to explore?",
"Hey! I'm Exifa, an AI assistant for extracting and explaining EXIF data. How can I help you today?",
]
message = random.choice(welcome_messages)
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": message}]
if "exif_df" not in st.session_state:
st.session_state["exif_df"] = pd.DataFrame()
if "url_exif_df" not in st.session_state:
st.session_state["url_exif_df"] = pd.DataFrame()
if "show_expanders" not in st.session_state:
st.session_state.show_expanders = True
if "reset_trigger" not in st.session_state:
st.session_state.reset_trigger = False
if "uploaded_files" not in st.session_state:
st.session_state["uploaded_files"] = None
if "image_url" not in st.session_state:
st.session_state["image_url"] = ""
if "follow_up" not in st.session_state:
st.session_state.follow_up = False
if "show_animation" not in st.session_state:
st.session_state.show_animation = True
def clear_url():
st.session_state["image_url"] = ""
def clear_files():
st.session_state["uploaded_files"] = None
st.session_state["file_uploader_key"] = not st.session_state.get(
"file_uploader_key", False
)
def download_image(data):
st.download_button(
label="β© Download Image",
data=data,
file_name="image_no_exif.jpg",
mime="image/jpeg",
)
def clear_chat_history():
st.session_state.reset_trigger = not st.session_state.reset_trigger
st.session_state.show_expanders = True
st.session_state.show_animation = True
st.session_state.messages = [{"role": "assistant", "content": message}]
st.session_state["exif_df"] = pd.DataFrame()
st.session_state["url_exif_df"] = pd.DataFrame()
uploaded_files = ""
if "uploaded_files" in st.session_state:
del st.session_state["uploaded_files"]
if "image_url" in st.session_state:
st.session_state["image_url"] = ""
st.cache_data.clear()
st.success("Chat History Cleared!")
def clear_exif_data(image_input):
if isinstance(image_input, BytesIO):
image_input.seek(0)
image = Image.open(image_input)
elif isinstance(image_input, Image.Image):
image = image_input
else:
raise ValueError("Unsupported image input type")
data = list(image.getdata())
image_without_exif = Image.new(image.mode, image.size)
image_without_exif.putdata(data)
buffered = BytesIO()
image_without_exif.save(buffered, format="JPEG", quality=100, optimize=True)
buffered.seek(0)
return buffered.getvalue()
with st.sidebar:
image_url = (
"https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/Exifa.gif"
)
st.markdown(
f"""
<div style='display: flex; align-items: center;'>
<img src='{image_url}' style='width: 50px; height: 50px; margin-right: 30px;'>
<h1 style='margin: 0;'>Exifa.net</h1>
</div>
""",
unsafe_allow_html=True,
)
expander = st.expander("π File Input")
with expander:
image_url = st.text_input(
"Enter image URL for EXIF analysis:",
key="image_url",
on_change=clear_files,
value=st.session_state.image_url,
)
file_uploader_key = "file_uploader_{}".format(
st.session_state.get("file_uploader_key", False)
)
uploaded_files = st.file_uploader(
"Upload local files:",
type=["txt", "pdf", "docx", "csv", "jpg", "png", "jpeg"],
key=file_uploader_key,
on_change=clear_url,
accept_multiple_files=True,
)
if uploaded_files is not None:
st.session_state["uploaded_files"] = uploaded_files
expander = st.expander("β Model Configuration")
with expander:
if "REPLICATE_API_TOKEN" in st.secrets:
replicate_api = st.secrets["REPLICATE_API_TOKEN"]
else:
replicate_api = st.text_input("Enter Replicate API token:", type="password")
if not (replicate_api.startswith("r8_") and len(replicate_api) == 40):
st.warning("Please enter your Replicate API token.", icon="β οΈ")
st.markdown(
"**Don't have an API token?** Head over to [Replicate](https://replicate.com/account/api-tokens) to sign up for one."
)
os.environ["REPLICATE_API_TOKEN"] = replicate_api
st.subheader("Adjust model parameters")
temperature = st.slider(
"Temperature", min_value=0.01, max_value=5.0, value=0.3, step=0.01
)
top_p = st.slider("Top P", min_value=0.01, max_value=1.0, value=0.2, step=0.01)
max_new_tokens = st.number_input(
"Max New Tokens", min_value=1, max_value=1024, value=512
)
min_new_tokens = st.number_input(
"Min New Tokens", min_value=0, max_value=512, value=0
)
presence_penalty = st.slider(
"Presence Penalty", min_value=0.0, max_value=2.0, value=1.15, step=0.05
)
frequency_penalty = st.slider(
"Frequency Penalty", min_value=0.0, max_value=2.0, value=0.2, step=0.05
)
stop_sequences = st.text_area("Stop Sequences", value="<|im_end|>", height=100)
if uploaded_files and not st.session_state["exif_df"].empty:
with st.expander("π EXIF Details"):
st.dataframe(st.session_state["exif_df"])
if image_url and not st.session_state["url_exif_df"].empty:
with st.expander("π EXIF Details"):
st.dataframe(st.session_state["url_exif_df"])
base_prompt = """
You are an expert EXIF Analyser. The user will provide an image file and you will explain the file EXIF in verbose detail.
Pay careful attention to the data of the EXIF image and create a profile for the user who took this image.
1. Make inferences on things like location, budget, experience, etc. (2 paragraphs)
2. Make as many inferences as possible about the exif data in the next 3 paragraphs.
3. Please follow this format, style, pacing and structure.
4. In addition to the content above, provide 1 more paragraph about the users financial standing based on the equipment they are using and estimate their experience.
DO NOT skip any steps.
FORMAT THE RESULT IN MULTIPLE PARAGRAPHS
Do not keep talking and rambling on - Get to the point.
"""
if uploaded_files:
for uploaded_file in uploaded_files:
if uploaded_file.type == "application/pdf":
with pdfplumber.open(uploaded_file) as pdf:
pages = [page.extract_text() for page in pdf.pages]
file_text = "\n".join(pages) if pages else ""
elif uploaded_file.type == "text/plain":
file_text = str(uploaded_file.read(), "utf-8")
elif (
uploaded_file.type
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
doc = Document(uploaded_file)
file_text = "\n".join([para.text for para in doc.paragraphs])
elif uploaded_file.type == "text/csv":
df = pd.read_csv(uploaded_file)
file_text = df.to_string(index=False)
elif uploaded_file.type in ["image/jpeg", "image/png", "image/jpg"]:
import tempfile
with tempfile.NamedTemporaryFile(delete=False) as temp:
temp.write(uploaded_file.read())
temp.flush()
temp.close()
with open(temp.name, "rb") as file:
tags = exifread.process_file(file)
exif_data = {}
for tag in tags.keys():
if tag not in [
"JPEGThumbnail",
"TIFFThumbnail",
"Filename",
"EXIF MakerNote",
]:
exif_data[tag] = str(tags[tag])
df = pd.DataFrame(exif_data, index=[0])
df.insert(loc=0, column="Image Feature", value=["Value"] * len(df))
df = df.transpose()
df.columns = df.iloc[0]
df = df.iloc[1:]
st.session_state["exif_df"] = df
file_text = "\n".join(
[
f"{tag}: {tags[tag]}"
for tag in tags.keys()
if tag
not in (
"JPEGThumbnail",
"TIFFThumbnail",
"Filename",
"EXIF MakerNote",
)
]
)
os.unlink(temp.name)
base_prompt += "\n" + file_text
if image_url:
try:
response = requests.head(image_url)
if response.headers["Content-Type"] in [
"image/jpeg",
"image/png",
"image/jpg",
]:
response = requests.get(image_url)
response.raise_for_status()
image_data = BytesIO(response.content)
image = Image.open(image_data)
image.load()
tags = exifread.process_file(image_data)
exif_data = {}
for tag in tags.keys():
if tag not in [
"JPEGThumbnail",
"TIFFThumbnail",
"Filename",
"EXIF MakerNote",
]:
exif_data[tag] = str(tags[tag])
df = pd.DataFrame(exif_data, index=[0])
df.insert(loc=0, column="Image Feature", value=["Value"] * len(df))
df = df.transpose()
df.columns = df.iloc[0]
df = df.iloc[1:]
st.session_state["url_exif_df"] = df
file_text = "\n".join(
[
f"{tag}: {tags[tag]}"
for tag in tags.keys()
if tag
not in (
"JPEGThumbnail",
"TIFFThumbnail",
"Filename",
"EXIF MakerNote",
)
]
)
base_prompt += "\n" + file_text
else:
pass
except requests.RequestException:
pass
def load_image(file):
if isinstance(file, str):
response = requests.get(file)
response.raise_for_status()
return Image.open(BytesIO(response.content))
elif isinstance(file, bytes):
return Image.open(BytesIO(file))
else:
return Image.open(file)
uploaded_file = image
with st.expander("β RGB Channel"):
def get_channel_image(image, channels):
data = np.array(image)
channel_data = np.zeros_like(data)
for channel in channels:
channel_data[:, :, channel] = data[:, :, channel]
return Image.fromarray(channel_data)
channels = st.multiselect(
"Select channels:",
["Red", "Green", "Blue"],
default=["Red", "Green", "Blue"],
)
if channels:
channel_indices = [
0 if channel == "Red" else 1 if channel == "Green" else 2
for channel in channels
]
combined_image = get_channel_image(image, channel_indices)
st.image(combined_image, use_column_width=True)
else:
st.image(image, use_column_width=True)
with st.expander("γ½ HSV Distribution"):
def get_hsv_histogram(image):
hsv_image = image.convert("HSV")
data = np.array(hsv_image)
hue_hist, _ = np.histogram(data[:, :, 0], bins=256, range=(0, 256))
saturation_hist, _ = np.histogram(
data[:, :, 1], bins=256, range=(0, 256)
)
value_hist, _ = np.histogram(data[:, :, 2], bins=256, range=(0, 256))
histogram_df = pd.DataFrame(
{
"Hue": hue_hist,
"Saturation": saturation_hist,
"Value": value_hist,
}
)
return histogram_df
hsv_histogram_df = get_hsv_histogram(image)
st.line_chart(hsv_histogram_df)
with st.expander("β Color Distribution"):
if image_url:
image = load_image(image_url)
if image:
def color_distribution_sunburst(data):
data = np.array(data)
red, green, blue = data[:, :, 0], data[:, :, 1], data[:, :, 2]
color_intensity = {"color": [], "intensity": [], "count": []}
for name, channel in zip(
["Red", "Green", "Blue"], [red, green, blue]
):
unique, counts = np.unique(channel, return_counts=True)
color_intensity["color"].extend([name] * len(unique))
color_intensity["intensity"].extend(unique)
color_intensity["count"].extend(counts)
df = pd.DataFrame(color_intensity)
fig = px.sunburst(
df,
path=["color", "intensity"],
values="count",
color="color",
color_discrete_map={
"Red": "#ff6666",
"Green": "#85e085",
"Blue": "#6666ff",
},
)
return fig
fig = color_distribution_sunburst(image)
st.plotly_chart(fig, use_container_width=True)
with st.expander("πΈ 3D Color Space"):
def plot_3d_color_space(data, skip_factor):
sample = data[::skip_factor, ::skip_factor].reshape(-1, 3)
normalized_colors = sample / 255.0
trace = go.Scatter3d(
x=sample[:, 0],
y=sample[:, 1],
z=sample[:, 2],
mode="markers",
marker=dict(
size=5,
color=["rgb({},{},{})".format(r, g, b) for r, g, b in sample],
opacity=0.8,
),
)
layout = go.Layout(
scene=dict(
xaxis=dict(title="Red"),
yaxis=dict(title="Green"),
zaxis=dict(title="Blue"),
camera=dict(eye=dict(x=1.25, y=1.25, z=1.25)),
),
margin=dict(l=0, r=0, b=0, t=30),
)
fig = go.Figure(data=[trace], layout=layout)
return fig
skip_factor = 8
if isinstance(uploaded_file, Image.Image):
data = np.array(uploaded_file)
else:
data = np.array(Image.open(uploaded_file))
fig = plot_3d_color_space(data, skip_factor)
st.plotly_chart(fig, use_container_width=True, config=config)
with st.expander("βπ¦Ή Pixel Density Polar"):
def pixel_density_polar_plot(image):
image_data = np.array(image)
hsv_data = mcolors.rgb_to_hsv(image_data / 255.0)
hue = hsv_data[:, :, 0].flatten()
hist, bins = np.histogram(hue, bins=360, range=(0, 1))
theta = np.linspace(0, 360, len(hist), endpoint=False)
fig = px.bar_polar(
r=hist,
theta=theta,
template="seaborn",
color_discrete_sequence=["red"],
)
fig.update_traces(marker=dict(line=dict(color="red", width=1)))
fig.update_layout()
return fig
if uploaded_file is not None:
if isinstance(uploaded_file, Image.Image):
image = uploaded_file
else:
image = Image.open(uploaded_file)
fig = pixel_density_polar_plot(image)
st.plotly_chart(fig, use_container_width=True, config=config)
with st.expander("α¨ 3D Surface (Color Intensities)"):
def surface_plot_image_intensity(data):
intensity = np.mean(data, axis=2)
sample_size = int(intensity.shape[0] * 0.35)
intensity_sample = intensity[:sample_size, :sample_size]
fig = go.Figure(
data=[go.Surface(z=intensity_sample, colorscale="Viridis")]
)
fig.update_layout(autosize=True)
return fig
if isinstance(uploaded_file, Image.Image):
data = np.array(uploaded_file)
else:
data = np.array(Image.open(uploaded_file))
fig = surface_plot_image_intensity(data)
st.plotly_chart(fig, use_container_width=True, config=config)
with st.expander("π Color Palette"):
def extract_color_palette(image, num_colors=6):
image = image.resize((100, 100))
result = image.quantize(colors=num_colors)
palette = result.getpalette()
color_counts = result.getcolors()
colors = [palette[i * 3 : (i + 1) * 3] for i in range(num_colors)]
counts = [
count
for count, _ in sorted(
color_counts, reverse=True, key=lambda x: x[0]
)
]
return colors, counts
def plot_color_palette(colors, counts):
fig = go.Figure()
for i, (color, count) in enumerate(zip(colors, counts)):
hex_color = "#%02x%02x%02x" % tuple(color)
fig.add_trace(
go.Bar(
x=[1],
y=[hex_color],
orientation="h",
marker=dict(color=hex_color),
hoverinfo="text",
hovertext=f"<b>HEX:</b> {hex_color}<br><b>Count:</b> {count}",
name="",
)
)
fig.update_layout(
xaxis=dict(showticklabels=False),
yaxis=dict(showticklabels=True),
showlegend=False,
template="plotly_dark",
height=400,
)
return fig
num_colors = st.slider("Number of Colors", 2, 10, 6)
if isinstance(uploaded_file, Image.Image):
image = uploaded_file.convert("RGB")
else:
image = Image.open(uploaded_file).convert("RGB")
colors, counts = extract_color_palette(image, num_colors)
fig = plot_color_palette(colors, counts)
st.plotly_chart(fig, use_container_width=True, config=config)
if uploaded_file is not None:
col1, col2 = st.columns(2)
clean_img = clear_exif_data(image)
with col1:
st.button("π Clear Chat History", on_click=clear_chat_history)
with col2:
download_image(clean_img)
st.session_state.reset_trigger = True
if st.session_state.show_expanders:
if uploaded_files and not st.session_state["exif_df"].empty:
with st.expander("β RGB Channel"):
for uploaded_file in uploaded_files:
if uploaded_file.type in ["image/jpeg", "image/png", "image/jpg"]:
def load_image(image_file):
return Image.open(image_file)
image = load_image(uploaded_file)
def get_channel_image(image, channels):
data = np.array(image)
channel_data = np.zeros_like(data)
for channel in channels:
channel_data[:, :, channel] = data[:, :, channel]
return Image.fromarray(channel_data)
channels = st.multiselect(
"Select channels:",
["Red", "Green", "Blue"],
default=["Red", "Green", "Blue"],
)
if channels:
channel_indices = [
0 if channel == "Red" else 1 if channel == "Green" else 2
for channel in channels
]
combined_image = get_channel_image(image, channel_indices)
st.image(combined_image, use_column_width=True)
else:
st.image(image, use_column_width=True)
with st.expander("γ½ HSV Distribution"):
def get_hsv_histogram(image):
hsv_image = image.convert("HSV")
data = np.array(hsv_image)
hue_hist, _ = np.histogram(data[:, :, 0], bins=256, range=(0, 256))
saturation_hist, _ = np.histogram(
data[:, :, 1], bins=256, range=(0, 256)
)
value_hist, _ = np.histogram(
data[:, :, 2], bins=256, range=(0, 256)
)
histogram_df = pd.DataFrame(
{
"Hue": hue_hist,
"Saturation": saturation_hist,
"Value": value_hist,
}
)
return histogram_df
hsv_histogram_df = get_hsv_histogram(image)
st.line_chart(hsv_histogram_df)
with st.expander("β Color Distribution"):
def color_distribution_sunburst(data):
data = np.array(data)
red, green, blue = data[:, :, 0], data[:, :, 1], data[:, :, 2]
color_intensity = {"color": [], "intensity": [], "count": []}
for name, channel in zip(
["Red", "Green", "Blue"], [red, green, blue]
):
unique, counts = np.unique(channel, return_counts=True)
color_intensity["color"].extend([name] * len(unique))
color_intensity["intensity"].extend(unique)
color_intensity["count"].extend(counts)
df = pd.DataFrame(color_intensity)
fig = px.sunburst(
df,
path=["color", "intensity"],
values="count",
color="color",
color_discrete_map={
"Red": "#ff6666",
"Green": "#85e085",
"Blue": "#6666ff",
},
)
return fig
image = load_image(uploaded_file)
fig = color_distribution_sunburst(image)
st.plotly_chart(fig, use_container_width=True, config=config)
with st.expander("πΈ 3D Color Space"):
def plot_3d_color_space(data, skip_factor):
sample = data[::skip_factor, ::skip_factor].reshape(-1, 3)
normalized_colors = sample / 255.0
trace = go.Scatter3d(
x=sample[:, 0],
y=sample[:, 1],
z=sample[:, 2],
mode="markers",
marker=dict(
size=5,
color=[
"rgb({},{},{})".format(r, g, b) for r, g, b in sample
],
opacity=0.8,
),
)
layout = go.Layout(
scene=dict(
xaxis=dict(title="Red"),
yaxis=dict(title="Green"),
zaxis=dict(title="Blue"),
camera=dict(eye=dict(x=1.25, y=1.25, z=1.25)),
),
margin=dict(l=0, r=0, b=0, t=30),
)
fig = go.Figure(data=[trace], layout=layout)
return fig
skip_factor = 8
data = np.array(Image.open(uploaded_file))
fig = plot_3d_color_space(data, skip_factor)
st.plotly_chart(fig, use_container_width=True, config=config)
with st.expander("π¦Ή Pixel Density Polar"):
def pixel_density_polar_plot(data):
image_data = np.array(Image.open(data))
hsv_data = mcolors.rgb_to_hsv(image_data / 255.0)
hue = hsv_data[:, :, 0].flatten()
hist, bins = np.histogram(hue, bins=360, range=(0, 1))
theta = np.linspace(0, 360, len(hist), endpoint=False)
fig = px.bar_polar(
r=hist,
theta=theta,
template="seaborn",
color_discrete_sequence=["red"],
)
fig.update_traces(marker=dict(line=dict(color="red", width=1)))
fig.update_layout()
return fig
if uploaded_file is not None:
fig = pixel_density_polar_plot(uploaded_file)
st.plotly_chart(fig, use_container_width=True, config=config)
with st.expander("α¨ 3D Surface (Color Intensities)"):
def surface_plot_image_intensity(data):
intensity = np.mean(data, axis=2)
sample_size = int(intensity.shape[0] * 0.35)
intensity_sample = intensity[:sample_size, :sample_size]
fig = go.Figure(
data=[go.Surface(z=intensity_sample, colorscale="Viridis")]
)
fig.update_layout(autosize=True)
return fig
data = np.array(Image.open(uploaded_file))
fig = surface_plot_image_intensity(data)
st.plotly_chart(fig, use_container_width=True, config=config)
with st.expander("π Color Palette"):
def extract_color_palette(image, num_colors=6):
image = image.resize((100, 100))
result = image.quantize(colors=num_colors)
palette = result.getpalette()
color_counts = result.getcolors()
colors = [palette[i * 3 : (i + 1) * 3] for i in range(num_colors)]
counts = [
count
for count, _ in sorted(
color_counts, reverse=True, key=lambda x: x[0]
)
]
return colors, counts
def plot_color_palette(colors, counts):
fig = go.Figure()
for i, (color, count) in enumerate(zip(colors, counts)):
hex_color = "#%02x%02x%02x" % tuple(color)
fig.add_trace(
go.Bar(
x=[1],
y=[hex_color],
orientation="h",
marker=dict(color=hex_color),
hoverinfo="text",
hovertext=f"<b>HEX:</b> {hex_color}<br><b>Count:</b> {count}",
name="",
)
)
fig.update_layout(
xaxis=dict(showticklabels=False),
yaxis=dict(showticklabels=True),
showlegend=False,
template="plotly_dark",
height=400,
)
return fig
num_colors = st.slider("Number of Colors", 2, 10, 6)
image = Image.open(uploaded_file).convert("RGB")
colors, counts = extract_color_palette(image, num_colors)
fig = plot_color_palette(colors, counts)
st.plotly_chart(fig, use_container_width=True, config=config)
st.session_state.reset_trigger = True
col1, col2 = st.columns(2)
with col1:
st.button("π Clear Chat History", on_click=clear_chat_history)
with col2:
clear = clear_exif_data(image)
download_image(clear)
@st.experimental_dialog("How to use Exifa.net", width=1920)
def show_video(item):
video_url = "https://www.youtube.com/watch?v=CS7rkWu7LNY"
st.video(video_url, loop=False, autoplay=True, muted=False)
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=icons[message["role"]]):
st.write(message["content"])
if message == st.session_state["messages"][0]:
if st.button("How can I use Exifa?"):
show_video("")
st.sidebar.caption(
"Built by [Sahir Maharaj](https://www.linkedin.com/in/sahir-maharaj/). Like this? [Hire me!](https://topmate.io/sahirmaharaj/362667)"
)
linkedin = "https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/linkedin.gif"
topmate = "https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/topmate.gif"
email = "https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/email.gif"
newsletter = (
"https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/newsletter.gif"
)
share = "https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/share.gif"
uptime = "https://uptime.betterstack.com/status-badges/v1/monitor/196o6.svg"
st.sidebar.caption(
f"""
<div style='display: flex; align-items: center;'>
<a href = 'https://www.linkedin.com/in/sahir-maharaj/'><img src='{linkedin}' style='width: 35px; height: 35px; margin-right: 25px;'></a>
<a href = 'https://topmate.io/sahirmaharaj/362667'><img src='{topmate}' style='width: 32px; height: 32px; margin-right: 25px;'></a>
<a href = 'mailto:sahir@sahirmaharaj.com'><img src='{email}' style='width: 28px; height: 28px; margin-right: 25px;'></a>
<a href = 'https://www.linkedin.com/build-relation/newsletter-follow?entityUrn=7163516439096733696'><img src='{newsletter}' style='width: 28px; height: 28px; margin-right: 25px;'></a>
<a href = 'https://www.kaggle.com/sahirmaharajj'><img src='{share}' style='width: 28px; height: 28px; margin-right: 25px;'></a>
</div>
<br>
<a href = 'https://exifa.betteruptime.com/'><img src='{uptime}'></a>
<a href="https://www.producthunt.com/posts/exifa-net?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-exifa-net" target="_blank"><img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=474560&theme=dark" alt="Exifa.net - Your AI assistant for understanding EXIF data | Product Hunt" style="width: 125px; height: 27px;" width="125" height="27" /></a>
""",
unsafe_allow_html=True,
)
@st.cache_resource(show_spinner=False)
def get_tokenizer():
return AutoTokenizer.from_pretrained("huggyllama/llama-7b")
def get_num_tokens(prompt):
tokenizer = get_tokenizer()
tokens = tokenizer.tokenize(prompt)
return len(tokens)
def generate_arctic_response_follow_up():
follow_up_response = ""
last_three_messages = st.session_state.messages[-3:]
for message in last_three_messages:
follow_up_response += "\n\n {}".format(message)
prompt = [
"Please generate one question based on the conversation thus far that the user might ask next. Ensure the question is short, less than 8 words, stays on the topic of EXIF and its importance and dangers, and is formatted with underscores instead of spaces, e.g., What_does_EXIF_mean? Conversation Info = {}. Please generate one question based on the conversation thus far that the user might ask next. Ensure the question is short, less than 8 words, stays on the topic of EXIF and its importance and dangers, and is formatted with underscores instead of spaces".format(
follow_up_response
)
]
prompt.append("assistant\n")
prompt_str = "\n".join(prompt)
full_response = []
for event in replicate.stream(
"snowflake/snowflake-arctic-instruct",
input={
"prompt": prompt_str,
"prompt_template": r"{prompt}",
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
"min_new_tokens": min_new_tokens,
"presence_penalty": presence_penalty,
"frequency_penalty": frequency_penalty,
"stop_sequences": stop_sequences,
},
):
full_response.append(str(event).strip())
complete_response = "".join(full_response)
return complete_response
def generate_arctic_response():
prompt = [base_prompt] if base_prompt else []
for dict_message in st.session_state.messages:
if dict_message["role"] == "user":
prompt.append("user\n" + dict_message["content"])
else:
prompt.append("assistant\n" + dict_message["content"])
prompt.append("assistant\n")
prompt_str = "\n".join(prompt)
if get_num_tokens(prompt_str) >= 1000000:
st.error("Conversation length too long. Please keep it under 1000000 tokens.")
st.button(
"π Clear Chat History",
on_click=clear_chat_history,
key="clear_chat_history",
)
st.stop()
for event in replicate.stream(
"snowflake/snowflake-arctic-instruct",
input={
"prompt": prompt_str,
"prompt_template": r"{prompt}",
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
"min_new_tokens": min_new_tokens,
"presence_penalty": presence_penalty,
"frequency_penalty": frequency_penalty,
"stop_sequences": stop_sequences,
},
):
yield str(event)
def display_question():
st.session_state.follow_up = True
if prompt := st.chat_input(disabled=not replicate_api):
st.session_state.show_animation = False
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message(
"user",
avatar="https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/user.gif",
):
st.write(prompt)
if st.session_state.follow_up:
st.session_state.show_animation = False
unique_key = "chat_input_" + str(hash("Snowflake Arctic is cool"))
complete_question = generate_arctic_response_follow_up()
formatted_question = complete_question.replace("_", " ").strip()
st.session_state.messages.append({"role": "user", "content": formatted_question})
with st.chat_message(
"user",
avatar="https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/user.gif",
):
st.write(formatted_question)
st.session_state.follow_up = False
with st.chat_message(
"assistant",
avatar="https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/assistant.gif",
):
response = generate_arctic_response()
full_response = st.write_stream(response)
message = {"role": "assistant", "content": full_response}
st.session_state.messages.append(message)
full_response_prompt = generate_arctic_response_follow_up()
message_prompt = {"content": full_response_prompt}
st.button(
str(message_prompt["content"]).replace("_", " ").strip(),
on_click=display_question,
)
if st.session_state.messages[-1]["role"] != "assistant":
st.session_state.show_animation = False
with st.chat_message(
"assistant",
avatar="https://raw.githubusercontent.com/sahirmaharaj/exifa/main/img/assistant.gif",
):
response = generate_arctic_response()
full_response = st.write_stream(response)
message = {"role": "assistant", "content": full_response}
full_response_prompt = generate_arctic_response_follow_up()
message_prompt = {"content": full_response_prompt}
st.button(
str(message_prompt["content"]).replace("_", " ").strip(),
on_click=display_question,
)
st.session_state.messages.append(message)
if st.session_state.reset_trigger:
unique_key = "chat_input_" + str(hash("Snowflake Arctic is cool"))
complete_question = generate_arctic_response_follow_up()
st.session_state.show_animation = False
if "has_snowed" not in st.session_state:
st.snow()
st.session_state["has_snowed"] = True
if st.session_state.show_animation:
components.html(particles_js, height=370, scrolling=False)
|