import streamlit as st import numpy as np from io import BytesIO from PIL import Image import tensorflow as tf import base64 import cv2 import os from dotenv import load_dotenv import google.generativeai as genai load_dotenv() genai.configure(api_key=os.getenv('GOOGLE_API_KEY')) header_image_path = 'farmi.jpg' st.image(header_image_path, use_column_width='auto') def get_gemini_repsonse(input,prompt): model=genai.GenerativeModel('gemini-pro') response=model.generate_content([input,prompt]) return response.text input_prompt= """You are an farming expert and i want some remedial and preventive information about given plant disease. give me remedial informaion for appropriate environmental condition for that particular provided disease , soil condition and what pesticides and fertilizers to use. give the information in such away that it is easy for a farmer to understand in hindi and english one after other""" MODEL = tf.keras.models.load_model('./potato_trained_models/1/') TOMATO_MODEL = tf.keras.models.load_model('./tomato_trained_models/1') PEEPER_MODEL = tf.keras.models.load_model('./pepper_trained_models/1') class_names = ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy'] Tomato_classes = ['Tomato_healthy', 'Tomato_Spider_mites_Two_spotted_spider_mite', 'Tomato__Target_Spot', 'Tomato_Septoria_leaf_spot', 'Tomato__Tomato_mosaic_virus', 'Tomato_Leaf_Mold', 'Tomato_Bacterial_spot', 'Tomato_Late_blight', 'Tomato_Early_blight', 'Tomato__Tomato_YellowLeaf__Curl_Virus'] pepper_classes = ['pepper_bell_bacterial_spot','pepper_healthy'] st.title("Plant Disease Detection") st.write("This application is detecting disease in three plants photato, tomato and pepper") options = ["Select One Plant","Tomato", "Potato", "Pepper"] selected_option = st.selectbox("Select Plant:", options) uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) def read_file_as_image(data)->np.array: image = np.array(data) image = cv2.resize(image, (256,256)) return image async def potato(): if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", width=250) image = read_file_as_image(image) image_batch = np.expand_dims(image, axis=0) predictions = MODEL.predict(image_batch) predicted_class = class_names[np.argmax(predictions[0])] confidence = np.max(predictions[0]) print("prediction", class_names[np.argmax(predictions)]) st.write("Predicted Class : ", predicted_class, " Confidence Level : ", confidence) input=st.text_input(predicted_class,key="input") response=get_gemini_repsonse(input_prompt,input) st.subheader("The Response is") st.write(response) async def tomato(): if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", width=250) image = read_file_as_image(image) image_batch = np.expand_dims(image, axis=0) predictions = TOMATO_MODEL.predict(image_batch) predicted_class = Tomato_classes[np.argmax(predictions[0])] confidence = np.max(predictions[0]) print("prediction", Tomato_classes[np.argmax(predictions)]) st.write("Predicted Class : ", predicted_class, " Confidence Level : ", confidence) input=st.text_input(predicted_class,key="input") response=get_gemini_repsonse(input_prompt,input) st.subheader("The Response is") st.write(response) async def pepper(): if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", width=250) image = read_file_as_image(image) image_batch = np.expand_dims(image, axis=0) predictions = PEEPER_MODEL.predict(image_batch) predicted_class = pepper_classes[np.argmax(predictions[0])] confidence = np.max(predictions[0]) print("prediction", pepper_classes[np.argmax(predictions)]) st.write("Predicted Class : ", predicted_class, "Confidence Level : ", confidence) input=st.text_input(predicted_class,key="input") response=get_gemini_repsonse(input_prompt,input) st.subheader("The Response is") st.write(response) import asyncio if __name__ == "__main__": if st.button('Predict'): if selected_option == 'Potato': asyncio.run(potato()) elif selected_option == 'Tomato': asyncio.run(tomato()) else : asyncio.run(pepper()) # else: # st.write("not avalible")