KisanAI2 / app.py
shubham5027's picture
Upload 3 files
2af60be verified
import gradio as gr
import pickle
import numpy as np
import os
# Load the RandomForest model
working_dir = os.path.dirname(os.path.abspath(__file__))
model = pickle.load(open(f'{working_dir}/RF_Crop.sav', 'rb'))
# Define the prediction function
def predict_crop(N, P, K, temperature, humidity, pH, rainfall):
user_input = np.array([[N, P, K, temperature, humidity, pH, rainfall]])
if np.all(user_input == 0):
return "Please enter valid values."
else:
prediction = model.predict(user_input)
crop = prediction[0]
return f"Hey, you should grow **{crop}** based on your soil and environmental factors."
# Gradio UI components
def main_interface():
with gr.Blocks() as demo:
with gr.Tab("Get Recommendation"):
gr.Markdown("Enter the details about your soil and environmental factors to get a crop recommendation.")
gr.Markdown("**Example Values:** [104, 18, 30, 23.6, 60.3, 6.7, 140.91] or [60, 18, 30, 23.6, 60.3, 8, 40.91]")
N = gr.Number(label="Nitrogen (N)", value=0, precision=0)
P = gr.Number(label="Phosphorus (P)", value=0, precision=0)
K = gr.Number(label="Potassium (K)", value=0, precision=0)
temperature = gr.Number(label="Temperature (°C)", value=0.0)
humidity = gr.Number(label="Humidity (%)", value=0.0)
pH = gr.Number(label="pH", value=0.0)
rainfall = gr.Number(label="Rainfall (mm)", value=0.0)
output = gr.Textbox(label="Recommendation", interactive=False)
gr.Button("Predict").click(
predict_crop,
inputs=[N, P, K, temperature, humidity, pH, rainfall],
outputs=output
)
return demo
# Run the Gradio app
if __name__ == "__main__":
app = main_interface()
app.launch()