Spaces:
Sleeping
Sleeping
shubham5027
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,198 +1,198 @@
|
|
1 |
-
from tracemalloc import stop
|
2 |
-
import streamlit as st
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import re
|
6 |
-
import string
|
7 |
-
import nltk
|
8 |
-
from nltk.corpus import stopwords
|
9 |
-
from nltk.tokenize import word_tokenize
|
10 |
-
from nltk.stem.porter import PorterStemmer
|
11 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
-
from sklearn.model_selection import train_test_split
|
13 |
-
from sklearn.linear_model import LogisticRegression
|
14 |
-
from sklearn.tree import DecisionTreeRegressor
|
15 |
-
from sklearn.ensemble import RandomForestClassifier
|
16 |
-
|
17 |
-
nltk.download('punkt')
|
18 |
-
nltk.download('stopwords')
|
19 |
-
sw=nltk.corpus.stopwords.words("english")
|
20 |
-
|
21 |
-
rad=st.sidebar.radio("Navigation",["Home","Spam or Ham Detection","Sentiment Analysis","Stress Detection","Hate and Offensive Content Detection","Sarcasm Detection"])
|
22 |
-
|
23 |
-
#Home Page
|
24 |
-
if rad=="Home":
|
25 |
-
st.title("Complete Text Analysis App")
|
26 |
-
st.image("
|
27 |
-
st.text(" ")
|
28 |
-
st.text("The Following Text Analysis Options Are Available->")
|
29 |
-
st.text(" ")
|
30 |
-
st.text("1. Spam or Ham Detection")
|
31 |
-
st.text("2. Sentiment Analysis")
|
32 |
-
st.text("3. Stress Detection")
|
33 |
-
st.text("4. Hate and Offensive Content Detection")
|
34 |
-
st.text("5. Sarcasm Detection")
|
35 |
-
|
36 |
-
#function to clean and transform the user input which is in raw format
|
37 |
-
def transform_text(text):
|
38 |
-
text=text.lower()
|
39 |
-
text=nltk.word_tokenize(text)
|
40 |
-
y=[]
|
41 |
-
for i in text:
|
42 |
-
if i.isalnum():
|
43 |
-
y.append(i)
|
44 |
-
text=y[:]
|
45 |
-
y.clear()
|
46 |
-
for i in text:
|
47 |
-
if i not in stopwords.words('english') and i not in string.punctuation:
|
48 |
-
y.append(i)
|
49 |
-
text=y[:]
|
50 |
-
y.clear()
|
51 |
-
ps=PorterStemmer()
|
52 |
-
for i in text:
|
53 |
-
y.append(ps.stem(i))
|
54 |
-
return " ".join(y)
|
55 |
-
|
56 |
-
#Spam Detection Prediction
|
57 |
-
tfidf1=TfidfVectorizer(stop_words=sw,max_features=20)
|
58 |
-
def transform1(txt1):
|
59 |
-
txt2=tfidf1.fit_transform(txt1)
|
60 |
-
return txt2.toarray()
|
61 |
-
|
62 |
-
df1=pd.read_csv("Spam Detection.csv")
|
63 |
-
df1.columns=["Label","Text"]
|
64 |
-
x=transform1(df1["Text"])
|
65 |
-
y=df1["Label"]
|
66 |
-
x_train1,x_test1,y_train1,y_test1=train_test_split(x,y,test_size=0.1,random_state=0)
|
67 |
-
model1=LogisticRegression()
|
68 |
-
model1.fit(x_train1,y_train1)
|
69 |
-
|
70 |
-
#Spam Detection Analysis Page
|
71 |
-
if rad=="Spam or Ham Detection":
|
72 |
-
st.header("Detect Whether A Text Is Spam Or Ham??")
|
73 |
-
sent1=st.text_area("Enter The Text")
|
74 |
-
transformed_sent1=transform_text(sent1)
|
75 |
-
vector_sent1=tfidf1.transform([transformed_sent1])
|
76 |
-
prediction1=model1.predict(vector_sent1)[0]
|
77 |
-
|
78 |
-
if st.button("Predict"):
|
79 |
-
if prediction1=="spam":
|
80 |
-
st.warning("Spam Text!!")
|
81 |
-
elif prediction1=="ham":
|
82 |
-
st.success("Ham Text!!")
|
83 |
-
|
84 |
-
#Sentiment Analysis Prediction
|
85 |
-
tfidf2=TfidfVectorizer(stop_words=sw,max_features=20)
|
86 |
-
def transform2(txt1):
|
87 |
-
txt2=tfidf2.fit_transform(txt1)
|
88 |
-
return txt2.toarray()
|
89 |
-
|
90 |
-
df2=pd.read_csv("Sentiment Analysis.csv")
|
91 |
-
df2.columns=["Text","Label"]
|
92 |
-
x=transform2(df2["Text"])
|
93 |
-
y=df2["Label"]
|
94 |
-
x_train2,x_test2,y_train2,y_test2=train_test_split(x,y,test_size=0.1,random_state=0)
|
95 |
-
model2=LogisticRegression()
|
96 |
-
model2.fit(x_train2,y_train2)
|
97 |
-
|
98 |
-
#Sentiment Analysis Page
|
99 |
-
if rad=="Sentiment Analysis":
|
100 |
-
st.header("Detect The Sentiment Of The Text!!")
|
101 |
-
sent2=st.text_area("Enter The Text")
|
102 |
-
transformed_sent2=transform_text(sent2)
|
103 |
-
vector_sent2=tfidf2.transform([transformed_sent2])
|
104 |
-
prediction2=model2.predict(vector_sent2)[0]
|
105 |
-
|
106 |
-
if st.button("Predict"):
|
107 |
-
if prediction2==0:
|
108 |
-
st.warning("Negetive Text!!")
|
109 |
-
elif prediction2==1:
|
110 |
-
st.success("Positive Text!!")
|
111 |
-
|
112 |
-
#Stress Detection Prediction
|
113 |
-
tfidf3=TfidfVectorizer(stop_words=sw,max_features=20)
|
114 |
-
def transform3(txt1):
|
115 |
-
txt2=tfidf3.fit_transform(txt1)
|
116 |
-
return txt2.toarray()
|
117 |
-
|
118 |
-
df3=pd.read_csv("Stress Detection.csv")
|
119 |
-
df3=df3.drop(["subreddit","post_id","sentence_range","syntax_fk_grade"],axis=1)
|
120 |
-
df3.columns=["Text","Sentiment","Stress Level"]
|
121 |
-
x=transform3(df3["Text"])
|
122 |
-
y=df3["Stress Level"].to_numpy()
|
123 |
-
x_train3,x_test3,y_train3,y_test3=train_test_split(x,y,test_size=0.1,random_state=0)
|
124 |
-
model3=DecisionTreeRegressor(max_leaf_nodes=2000)
|
125 |
-
model3.fit(x_train3,y_train3)
|
126 |
-
|
127 |
-
#Stress Detection Page
|
128 |
-
if rad=="Stress Detection":
|
129 |
-
st.header("Detect The Amount Of Stress In The Text!!")
|
130 |
-
sent3=st.text_area("Enter The Text")
|
131 |
-
transformed_sent3=transform_text(sent3)
|
132 |
-
vector_sent3=tfidf3.transform([transformed_sent3])
|
133 |
-
prediction3=model3.predict(vector_sent3)[0]
|
134 |
-
|
135 |
-
if st.button("Predict"):
|
136 |
-
if prediction3>=0:
|
137 |
-
st.warning("Stressful Text!!")
|
138 |
-
elif prediction3<0:
|
139 |
-
st.success("Not A Stressful Text!!")
|
140 |
-
|
141 |
-
#Hate & Offensive Content Prediction
|
142 |
-
tfidf4=TfidfVectorizer(stop_words=sw,max_features=20)
|
143 |
-
def transform4(txt1):
|
144 |
-
txt2=tfidf4.fit_transform(txt1)
|
145 |
-
return txt2.toarray()
|
146 |
-
|
147 |
-
df4=pd.read_csv("Hate Content Detection.csv")
|
148 |
-
df4=df4.drop(["Unnamed: 0","count","neither"],axis=1)
|
149 |
-
df4.columns=["Hate Level","Offensive Level","Class Level","Text"]
|
150 |
-
x=transform4(df4["Text"])
|
151 |
-
y=df4["Class Level"]
|
152 |
-
x_train4,x_test4,y_train4,y_test4=train_test_split(x,y,test_size=0.1,random_state=0)
|
153 |
-
model4=RandomForestClassifier()
|
154 |
-
model4.fit(x_train4,y_train4)
|
155 |
-
|
156 |
-
#Hate & Offensive Content Page
|
157 |
-
if rad=="Hate and Offensive Content Detection":
|
158 |
-
st.header("Detect The Level Of Hate & Offensive Content In The Text!!")
|
159 |
-
sent4=st.text_area("Enter The Text")
|
160 |
-
transformed_sent4=transform_text(sent4)
|
161 |
-
vector_sent4=tfidf4.transform([transformed_sent4])
|
162 |
-
prediction4=model4.predict(vector_sent4)[0]
|
163 |
-
|
164 |
-
if st.button("Predict"):
|
165 |
-
if prediction4==0:
|
166 |
-
st.exception("Highly Offensive Text!!")
|
167 |
-
elif prediction4==1:
|
168 |
-
st.warning("Offensive Text!!")
|
169 |
-
elif prediction4==2:
|
170 |
-
st.success("Non Offensive Text!!")
|
171 |
-
|
172 |
-
#Sarcasm Detection Prediction
|
173 |
-
tfidf5=TfidfVectorizer(stop_words=sw,max_features=20)
|
174 |
-
def transform5(txt1):
|
175 |
-
txt2=tfidf5.fit_transform(txt1)
|
176 |
-
return txt2.toarray()
|
177 |
-
|
178 |
-
df5=pd.read_csv("Sarcasm Detection.csv")
|
179 |
-
df5.columns=["Text","Label"]
|
180 |
-
x=transform5(df5["Text"])
|
181 |
-
y=df5["Label"]
|
182 |
-
x_train5,x_test5,y_train5,y_test5=train_test_split(x,y,test_size=0.1,random_state=0)
|
183 |
-
model5=LogisticRegression()
|
184 |
-
model5.fit(x_train5,y_train5)
|
185 |
-
|
186 |
-
#Sarcasm Detection Page
|
187 |
-
if rad=="Sarcasm Detection":
|
188 |
-
st.header("Detect Whether The Text Is Sarcastic Or Not!!")
|
189 |
-
sent5=st.text_area("Enter The Text")
|
190 |
-
transformed_sent5=transform_text(sent5)
|
191 |
-
vector_sent5=tfidf5.transform([transformed_sent5])
|
192 |
-
prediction5=model5.predict(vector_sent5)[0]
|
193 |
-
|
194 |
-
if st.button("Predict"):
|
195 |
-
if prediction5==1:
|
196 |
-
st.exception("Sarcastic Text!!")
|
197 |
-
elif prediction5==0:
|
198 |
-
st.success("Non Sarcastic Text!!")
|
|
|
1 |
+
from tracemalloc import stop
|
2 |
+
import streamlit as st
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import re
|
6 |
+
import string
|
7 |
+
import nltk
|
8 |
+
from nltk.corpus import stopwords
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
from nltk.stem.porter import PorterStemmer
|
11 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
+
from sklearn.model_selection import train_test_split
|
13 |
+
from sklearn.linear_model import LogisticRegression
|
14 |
+
from sklearn.tree import DecisionTreeRegressor
|
15 |
+
from sklearn.ensemble import RandomForestClassifier
|
16 |
+
|
17 |
+
nltk.download('punkt')
|
18 |
+
nltk.download('stopwords')
|
19 |
+
sw=nltk.corpus.stopwords.words("english")
|
20 |
+
|
21 |
+
rad=st.sidebar.radio("Navigation",["Home","Spam or Ham Detection","Sentiment Analysis","Stress Detection","Hate and Offensive Content Detection","Sarcasm Detection"])
|
22 |
+
|
23 |
+
#Home Page
|
24 |
+
if rad=="Home":
|
25 |
+
st.title("Complete Text Analysis App")
|
26 |
+
st.image("SEO-articles-V2_Text-Analysis.png")
|
27 |
+
st.text(" ")
|
28 |
+
st.text("The Following Text Analysis Options Are Available->")
|
29 |
+
st.text(" ")
|
30 |
+
st.text("1. Spam or Ham Detection")
|
31 |
+
st.text("2. Sentiment Analysis")
|
32 |
+
st.text("3. Stress Detection")
|
33 |
+
st.text("4. Hate and Offensive Content Detection")
|
34 |
+
st.text("5. Sarcasm Detection")
|
35 |
+
|
36 |
+
#function to clean and transform the user input which is in raw format
|
37 |
+
def transform_text(text):
|
38 |
+
text=text.lower()
|
39 |
+
text=nltk.word_tokenize(text)
|
40 |
+
y=[]
|
41 |
+
for i in text:
|
42 |
+
if i.isalnum():
|
43 |
+
y.append(i)
|
44 |
+
text=y[:]
|
45 |
+
y.clear()
|
46 |
+
for i in text:
|
47 |
+
if i not in stopwords.words('english') and i not in string.punctuation:
|
48 |
+
y.append(i)
|
49 |
+
text=y[:]
|
50 |
+
y.clear()
|
51 |
+
ps=PorterStemmer()
|
52 |
+
for i in text:
|
53 |
+
y.append(ps.stem(i))
|
54 |
+
return " ".join(y)
|
55 |
+
|
56 |
+
#Spam Detection Prediction
|
57 |
+
tfidf1=TfidfVectorizer(stop_words=sw,max_features=20)
|
58 |
+
def transform1(txt1):
|
59 |
+
txt2=tfidf1.fit_transform(txt1)
|
60 |
+
return txt2.toarray()
|
61 |
+
|
62 |
+
df1=pd.read_csv("Spam Detection.csv")
|
63 |
+
df1.columns=["Label","Text"]
|
64 |
+
x=transform1(df1["Text"])
|
65 |
+
y=df1["Label"]
|
66 |
+
x_train1,x_test1,y_train1,y_test1=train_test_split(x,y,test_size=0.1,random_state=0)
|
67 |
+
model1=LogisticRegression()
|
68 |
+
model1.fit(x_train1,y_train1)
|
69 |
+
|
70 |
+
#Spam Detection Analysis Page
|
71 |
+
if rad=="Spam or Ham Detection":
|
72 |
+
st.header("Detect Whether A Text Is Spam Or Ham??")
|
73 |
+
sent1=st.text_area("Enter The Text")
|
74 |
+
transformed_sent1=transform_text(sent1)
|
75 |
+
vector_sent1=tfidf1.transform([transformed_sent1])
|
76 |
+
prediction1=model1.predict(vector_sent1)[0]
|
77 |
+
|
78 |
+
if st.button("Predict"):
|
79 |
+
if prediction1=="spam":
|
80 |
+
st.warning("Spam Text!!")
|
81 |
+
elif prediction1=="ham":
|
82 |
+
st.success("Ham Text!!")
|
83 |
+
|
84 |
+
#Sentiment Analysis Prediction
|
85 |
+
tfidf2=TfidfVectorizer(stop_words=sw,max_features=20)
|
86 |
+
def transform2(txt1):
|
87 |
+
txt2=tfidf2.fit_transform(txt1)
|
88 |
+
return txt2.toarray()
|
89 |
+
|
90 |
+
df2=pd.read_csv("Sentiment Analysis.csv")
|
91 |
+
df2.columns=["Text","Label"]
|
92 |
+
x=transform2(df2["Text"])
|
93 |
+
y=df2["Label"]
|
94 |
+
x_train2,x_test2,y_train2,y_test2=train_test_split(x,y,test_size=0.1,random_state=0)
|
95 |
+
model2=LogisticRegression()
|
96 |
+
model2.fit(x_train2,y_train2)
|
97 |
+
|
98 |
+
#Sentiment Analysis Page
|
99 |
+
if rad=="Sentiment Analysis":
|
100 |
+
st.header("Detect The Sentiment Of The Text!!")
|
101 |
+
sent2=st.text_area("Enter The Text")
|
102 |
+
transformed_sent2=transform_text(sent2)
|
103 |
+
vector_sent2=tfidf2.transform([transformed_sent2])
|
104 |
+
prediction2=model2.predict(vector_sent2)[0]
|
105 |
+
|
106 |
+
if st.button("Predict"):
|
107 |
+
if prediction2==0:
|
108 |
+
st.warning("Negetive Text!!")
|
109 |
+
elif prediction2==1:
|
110 |
+
st.success("Positive Text!!")
|
111 |
+
|
112 |
+
#Stress Detection Prediction
|
113 |
+
tfidf3=TfidfVectorizer(stop_words=sw,max_features=20)
|
114 |
+
def transform3(txt1):
|
115 |
+
txt2=tfidf3.fit_transform(txt1)
|
116 |
+
return txt2.toarray()
|
117 |
+
|
118 |
+
df3=pd.read_csv("Stress Detection.csv")
|
119 |
+
df3=df3.drop(["subreddit","post_id","sentence_range","syntax_fk_grade"],axis=1)
|
120 |
+
df3.columns=["Text","Sentiment","Stress Level"]
|
121 |
+
x=transform3(df3["Text"])
|
122 |
+
y=df3["Stress Level"].to_numpy()
|
123 |
+
x_train3,x_test3,y_train3,y_test3=train_test_split(x,y,test_size=0.1,random_state=0)
|
124 |
+
model3=DecisionTreeRegressor(max_leaf_nodes=2000)
|
125 |
+
model3.fit(x_train3,y_train3)
|
126 |
+
|
127 |
+
#Stress Detection Page
|
128 |
+
if rad=="Stress Detection":
|
129 |
+
st.header("Detect The Amount Of Stress In The Text!!")
|
130 |
+
sent3=st.text_area("Enter The Text")
|
131 |
+
transformed_sent3=transform_text(sent3)
|
132 |
+
vector_sent3=tfidf3.transform([transformed_sent3])
|
133 |
+
prediction3=model3.predict(vector_sent3)[0]
|
134 |
+
|
135 |
+
if st.button("Predict"):
|
136 |
+
if prediction3>=0:
|
137 |
+
st.warning("Stressful Text!!")
|
138 |
+
elif prediction3<0:
|
139 |
+
st.success("Not A Stressful Text!!")
|
140 |
+
|
141 |
+
#Hate & Offensive Content Prediction
|
142 |
+
tfidf4=TfidfVectorizer(stop_words=sw,max_features=20)
|
143 |
+
def transform4(txt1):
|
144 |
+
txt2=tfidf4.fit_transform(txt1)
|
145 |
+
return txt2.toarray()
|
146 |
+
|
147 |
+
df4=pd.read_csv("Hate Content Detection.csv")
|
148 |
+
df4=df4.drop(["Unnamed: 0","count","neither"],axis=1)
|
149 |
+
df4.columns=["Hate Level","Offensive Level","Class Level","Text"]
|
150 |
+
x=transform4(df4["Text"])
|
151 |
+
y=df4["Class Level"]
|
152 |
+
x_train4,x_test4,y_train4,y_test4=train_test_split(x,y,test_size=0.1,random_state=0)
|
153 |
+
model4=RandomForestClassifier()
|
154 |
+
model4.fit(x_train4,y_train4)
|
155 |
+
|
156 |
+
#Hate & Offensive Content Page
|
157 |
+
if rad=="Hate and Offensive Content Detection":
|
158 |
+
st.header("Detect The Level Of Hate & Offensive Content In The Text!!")
|
159 |
+
sent4=st.text_area("Enter The Text")
|
160 |
+
transformed_sent4=transform_text(sent4)
|
161 |
+
vector_sent4=tfidf4.transform([transformed_sent4])
|
162 |
+
prediction4=model4.predict(vector_sent4)[0]
|
163 |
+
|
164 |
+
if st.button("Predict"):
|
165 |
+
if prediction4==0:
|
166 |
+
st.exception("Highly Offensive Text!!")
|
167 |
+
elif prediction4==1:
|
168 |
+
st.warning("Offensive Text!!")
|
169 |
+
elif prediction4==2:
|
170 |
+
st.success("Non Offensive Text!!")
|
171 |
+
|
172 |
+
#Sarcasm Detection Prediction
|
173 |
+
tfidf5=TfidfVectorizer(stop_words=sw,max_features=20)
|
174 |
+
def transform5(txt1):
|
175 |
+
txt2=tfidf5.fit_transform(txt1)
|
176 |
+
return txt2.toarray()
|
177 |
+
|
178 |
+
df5=pd.read_csv("Sarcasm Detection.csv")
|
179 |
+
df5.columns=["Text","Label"]
|
180 |
+
x=transform5(df5["Text"])
|
181 |
+
y=df5["Label"]
|
182 |
+
x_train5,x_test5,y_train5,y_test5=train_test_split(x,y,test_size=0.1,random_state=0)
|
183 |
+
model5=LogisticRegression()
|
184 |
+
model5.fit(x_train5,y_train5)
|
185 |
+
|
186 |
+
#Sarcasm Detection Page
|
187 |
+
if rad=="Sarcasm Detection":
|
188 |
+
st.header("Detect Whether The Text Is Sarcastic Or Not!!")
|
189 |
+
sent5=st.text_area("Enter The Text")
|
190 |
+
transformed_sent5=transform_text(sent5)
|
191 |
+
vector_sent5=tfidf5.transform([transformed_sent5])
|
192 |
+
prediction5=model5.predict(vector_sent5)[0]
|
193 |
+
|
194 |
+
if st.button("Predict"):
|
195 |
+
if prediction5==1:
|
196 |
+
st.exception("Sarcastic Text!!")
|
197 |
+
elif prediction5==0:
|
198 |
+
st.success("Non Sarcastic Text!!")
|