Spaces:
Runtime error
Runtime error
import os | |
import sys | |
from torchvision.transforms import functional | |
sys.modules["torchvision.transforms.functional_tensor"] = functional | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from gfpgan.utils import GFPGANer | |
from realesrgan.utils import RealESRGANer | |
import torch | |
import cv2 | |
import gradio as gr | |
#Download Required Models | |
if not os.path.exists('realesr-general-x4v3.pth'): | |
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") | |
if not os.path.exists('GFPGANv1.2.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .") | |
if not os.path.exists('GFPGANv1.3.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .") | |
if not os.path.exists('GFPGANv1.4.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") | |
if not os.path.exists('RestoreFormer.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .") | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
model_path = 'realesr-general-x4v3.pth' | |
half = True if torch.cuda.is_available() else False | |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) | |
# Save Image to the Directory | |
# os.makedirs('output', exist_ok=True) | |
def upscaler(img, version, scale): | |
try: | |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = 'RGBA' | |
elif len(img.shape) == 2: | |
img_mode = None | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
else: | |
img_mode = None | |
h, w = img.shape[0:2] | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
face_enhancer = GFPGANer( | |
model_path=f'{version}.pth', | |
upscale=2, | |
arch='RestoreFormer' if version=='RestoreFormer' else 'clean', | |
channel_multiplier=2, | |
bg_upsampler=upsampler | |
) | |
try: | |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) | |
except RuntimeError as error: | |
print('Error', error) | |
try: | |
if scale != 2: | |
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 | |
h, w = img.shape[0:2] | |
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) | |
except Exception as error: | |
print('wrong scale input.', error) | |
# Save Image to the Directory | |
# ext = os.path.splitext(os.path.basename(str(img)))[1] | |
# if img_mode == 'RGBA': | |
# ext = 'png' | |
# else: | |
# ext = 'jpg' | |
# | |
# save_path = f'output/out.{ext}' | |
# cv2.imwrite(save_path, output) | |
# return output, save_path | |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) | |
return output | |
except Exception as error: | |
print('global exception', error) | |
return None, None | |
if __name__ == "__main__": | |
title = "Image Upscaler & Restoring [GFPGAN Algorithm]" | |
demo = gr.Interface( | |
upscaler, [ | |
gr.Image(type="filepath", label="Input"), | |
gr.Radio(['GFPGANv1.2', 'GFPGANv1.3', 'GFPGANv1.4', 'RestoreFormer'], type="value", label='version'), | |
gr.Number(label="Rescaling factor"), | |
], [ | |
gr.Image(type="numpy", label="Output"), | |
], | |
title=title, | |
allow_flagging="never" | |
) | |
demo.queue() | |
demo.launch() |