Spaces:
Runtime error
Runtime error
# Copyright (c) Tencent Inc. All rights reserved. | |
import copy | |
import os.path as osp | |
from typing import List | |
from mmengine.fileio import get_local_path | |
from mmdet.datasets.api_wrappers import COCO | |
from mmdet.datasets import CocoDataset | |
from mmyolo.registry import DATASETS | |
from .utils import RobustBatchShapePolicyDataset | |
v3det_ignore_list = [ | |
'a00013820/26_275_28143226914_ff3a247c53_c.jpg', | |
'n03815615/12_1489_32968099046_be38fa580e_c.jpg', | |
'n04550184/19_1480_2504784164_ffa3db8844_c.jpg', | |
'a00008703/2_363_3576131784_dfac6fc6ce_c.jpg', | |
'n02814533/28_2216_30224383848_a90697f1b3_c.jpg', | |
'n12026476/29_186_15091304754_5c219872f7_c.jpg', | |
'n01956764/12_2004_50133201066_72e0d9fea5_c.jpg', | |
'n03785016/14_2642_518053131_d07abcb5da_c.jpg', | |
'a00011156/33_250_4548479728_9ce5246596_c.jpg', | |
'a00009461/19_152_2792869324_db95bebc84_c.jpg', | |
] | |
# # ugly code here | |
# import json | |
# with open(osp.join("data/v3det/cats.json"), 'r') as f: | |
# _classes = json.load(f)['classes'] | |
class V3DetDataset(CocoDataset): | |
"""Objects365 v1 dataset for detection.""" | |
METAINFO = {'classes': 'classes', 'palette': None} | |
COCOAPI = COCO | |
# ann_id is unique in coco dataset. | |
ANN_ID_UNIQUE = True | |
def load_data_list(self) -> List[dict]: | |
"""Load annotations from an annotation file named as ``self.ann_file`` | |
Returns: | |
List[dict]: A list of annotation. | |
""" # noqa: E501 | |
with get_local_path(self.ann_file, | |
backend_args=self.backend_args) as local_path: | |
self.coco = self.COCOAPI(local_path) | |
# 'categories' list in objects365_train.json and objects365_val.json | |
# is inconsistent, need sort list(or dict) before get cat_ids. | |
cats = self.coco.cats | |
sorted_cats = {i: cats[i] for i in sorted(cats)} | |
self.coco.cats = sorted_cats | |
categories = self.coco.dataset['categories'] | |
sorted_categories = sorted(categories, key=lambda i: i['id']) | |
self.coco.dataset['categories'] = sorted_categories | |
# The order of returned `cat_ids` will not | |
# change with the order of the `classes` | |
self.cat_ids = self.coco.get_cat_ids( | |
cat_names=self.metainfo['classes']) | |
self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} | |
self.cat_img_map = copy.deepcopy(self.coco.cat_img_map) | |
img_ids = self.coco.get_img_ids() | |
data_list = [] | |
total_ann_ids = [] | |
for img_id in img_ids: | |
raw_img_info = self.coco.load_imgs([img_id])[0] | |
raw_img_info['img_id'] = img_id | |
ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) | |
raw_ann_info = self.coco.load_anns(ann_ids) | |
total_ann_ids.extend(ann_ids) | |
file_name = osp.join( | |
osp.split(osp.split(raw_img_info['file_name'])[0])[-1], | |
osp.split(raw_img_info['file_name'])[-1]) | |
if file_name in v3det_ignore_list: | |
continue | |
parsed_data_info = self.parse_data_info({ | |
'raw_ann_info': | |
raw_ann_info, | |
'raw_img_info': | |
raw_img_info | |
}) | |
data_list.append(parsed_data_info) | |
if self.ANN_ID_UNIQUE: | |
assert len(set(total_ann_ids)) == len( | |
total_ann_ids | |
), f"Annotation ids in '{self.ann_file}' are not unique!" | |
del self.coco | |
return data_list | |
class YOLOv5V3DetDataset(RobustBatchShapePolicyDataset, V3DetDataset): | |
"""Dataset for YOLOv5 VOC Dataset. | |
We only add `BatchShapePolicy` function compared with Objects365V1Dataset. | |
See `mmyolo/datasets/utils.py#BatchShapePolicy` for details | |
""" | |
pass | |