Spaces:
Sleeping
Sleeping
shylusakthi
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the HealthScribe Clinical Note Generator model and tokenizer
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model():
|
7 |
+
model_name = "har1/HealthScribe-Clinical_Note_Generator"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
+
return model, tokenizer
|
11 |
+
|
12 |
+
model, tokenizer = load_model()
|
13 |
+
|
14 |
+
st.title("HealthScribe Clinical Note Generator")
|
15 |
+
st.write("Generate clinical notes based on input text.")
|
16 |
+
|
17 |
+
# Input section
|
18 |
+
input_text = st.text_area("Enter patient information or medical notes:", height=200)
|
19 |
+
|
20 |
+
if st.button("Generate Clinical Note"):
|
21 |
+
if input_text.strip():
|
22 |
+
# Tokenize and generate
|
23 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
24 |
+
outputs = model.generate(inputs["input_ids"], max_length=512, num_beams=5, early_stopping=True)
|
25 |
+
generated_note = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
# Display the result
|
28 |
+
st.subheader("Generated Clinical Note")
|
29 |
+
st.write(generated_note)
|
30 |
+
else:
|
31 |
+
st.warning("Please enter some text to generate a clinical note.")
|