shylusakthi commited on
Commit
b9f07ca
·
verified ·
1 Parent(s): d61b844

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
3
+
4
+ # Load the HealthScribe Clinical Note Generator model and tokenizer
5
+ @st.cache_resource
6
+ def load_model():
7
+ model_name = "har1/HealthScribe-Clinical_Note_Generator"
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
10
+ return model, tokenizer
11
+
12
+ model, tokenizer = load_model()
13
+
14
+ st.title("HealthScribe Clinical Note Generator")
15
+ st.write("Generate clinical notes based on input text.")
16
+
17
+ # Input section
18
+ input_text = st.text_area("Enter patient information or medical notes:", height=200)
19
+
20
+ if st.button("Generate Clinical Note"):
21
+ if input_text.strip():
22
+ # Tokenize and generate
23
+ inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
24
+ outputs = model.generate(inputs["input_ids"], max_length=512, num_beams=5, early_stopping=True)
25
+ generated_note = tokenizer.decode(outputs[0], skip_special_tokens=True)
26
+
27
+ # Display the result
28
+ st.subheader("Generated Clinical Note")
29
+ st.write(generated_note)
30
+ else:
31
+ st.warning("Please enter some text to generate a clinical note.")