import streamlit as st from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Load the HealthScribe Clinical Note Generator model and tokenizer @st.cache_resource def load_model(): model_name = "har1/HealthScribe-Clinical_Note_Generator" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) return model, tokenizer model, tokenizer = load_model() st.title("HealthScribe Clinical Note Generator") st.write("Generate clinical notes based on input text.") # Input section input_text = st.text_area("Enter patient information or medical notes:", height=200) if st.button("Generate Clinical Note"): if input_text.strip(): # Tokenize and generate inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True) outputs = model.generate(inputs["input_ids"], max_length=512, num_beams=5, early_stopping=True) generated_note = tokenizer.decode(outputs[0], skip_special_tokens=True) # Display the result st.subheader("Generated Clinical Note") st.write(generated_note) else: st.warning("Please enter some text to generate a clinical note.")