import os import pdf2image import pytesseract import streamlit as st from langchain_community.vectorstores import FAISS from langchain_core.messages import AIMessage, HumanMessage from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_openai.chat_models.azure import ChatOpenAI from langchain_openai.embeddings.azure import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter from s3bucket import upload_to_s3 vector_database_name = "Adina_Vector_Database" temp_pdf_folder = "temp-pdf-files" RETRIEVER = None def delete_temp_files(): for item in os.listdir(temp_pdf_folder): file_path = os.path.join(temp_pdf_folder, item) os.remove(file_path) def extract_text(file): if file.type == "application/pdf": images = pdf2image.convert_from_bytes(file.getvalue()) text = "" for img in images: text += pytesseract.image_to_string(img) else: st.error("Invalid file type. Please upload pdf file.") return None return text def load_and_split(file): if not os.path.exists(temp_pdf_folder): os.makedirs(temp_pdf_folder) local_filepath = os.path.join(temp_pdf_folder, file.name) with open(local_filepath, "wb") as f: f.write(file.getvalue()) upload_to_s3(file_path=local_filepath, file_name=file.name) text = extract_text(file) if text: text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200 ) texts = text_splitter.split_text(text) docs = text_splitter.create_documents( texts=texts, metadatas=[{"file_name": file.name}] * len(texts) ) delete_temp_files() return docs def initialize_vector_db(): vector_database = FAISS.from_texts( ["Adina Cosmetic Ingredients"], OpenAIEmbeddings() ) vector_database.save_local(f"{vector_database_name}") return vector_database def load_vector_db(): if os.path.exists(f"{vector_database_name}"): return FAISS.load_local( f"{vector_database_name}", OpenAIEmbeddings(), allow_dangerous_deserialization=True, ) return initialize_vector_db() def append_to_vector_db(docs: list = []): global RETRIEVER existing_vector_db = load_vector_db() new_vector_db = FAISS.from_documents(docs, OpenAIEmbeddings()) existing_vector_db.merge_from(new_vector_db) existing_vector_db.save_local(f"{vector_database_name}") RETRIEVER = existing_vector_db.as_retriever() def create_embeddings(files: list = []): for file in files: docs = load_and_split(file) append_to_vector_db(docs=docs) st.session_state.last_uploaded_files.append(file.name) print(file.name, "processed successfully.") def get_response(user_query, chat_history): docs = RETRIEVER.invoke(user_query) template = """ Your name is ADINA, who provides helpful information about Adina Consmetic Ingredients. - Answer the question based on the retrieved information only. - If the question can not be answered, simply say you can not annswer it. - Avoid mentioning that you are answering based on retreived information. Execute the below mandatory considerations when responding to the inquiries: --- Tone - Respectful, Patient, and Encouraging: Maintain a tone that is not only polite but also encouraging. Positive language can help build confidence, especially when they are trying to learn something new. Be mindful of cultural references or idioms that may not be universally understood or may date back to a different era, ensuring relatability. --- Clarity - Simple, Direct, and Unambiguous: Avoid abbreviations, slang, or colloquialisms that might be confusing. Stick to standard language. Use bullet points or numbered lists to break down instructions or information, which can aid in comprehension. --- Structure - Organized, Consistent, and Considerate: Include relevant examples or analogies that relate to experiences common in their lifetime, which can aid in understanding complex topics. --- Empathy and Understanding - Compassionate and Responsive: Recognize and validate their feelings or concerns. Phrases like, “It’s completely normal to find this challenging,” can be comforting. Be aware of the potential need for more frequent repetition or rephrasing of information for clarity. Answer the following questions considering the history of the conversation and retrieved information. Chat history: {chat_history} retrieved information: {retrieved_info} User question: {user_question} """ prompt = ChatPromptTemplate.from_template(template) llm = ChatOpenAI(model="gpt-3.5-turbo-0125", streaming=True) chain = prompt | llm | StrOutputParser() return chain.stream( { "chat_history": chat_history, "retrieved_info": docs, "user_question": user_query, } ) def main(): st.set_page_config(page_title="Adina Cosmetic Ingredients", page_icon="") st.title("Adina Cosmetic Ingredients") if "last_uploaded_files" not in st.session_state: st.session_state.last_uploaded_files = [] if "chat_history" not in st.session_state: st.session_state.chat_history = [ AIMessage(content="Hello, I am Adina. How can I help you?"), ] for message in st.session_state.chat_history: if isinstance(message, AIMessage): with st.chat_message("AI"): st.write(message.content) elif isinstance(message, HumanMessage): with st.chat_message("Human"): st.write(message.content) user_query = st.chat_input("Type your message here...") if user_query is not None and user_query != "": st.session_state.chat_history.append(HumanMessage(content=user_query)) with st.chat_message("Human"): st.markdown(user_query) with st.chat_message("AI"): response = st.write_stream( get_response( user_query=user_query, chat_history=st.session_state.chat_history ) ) st.session_state.chat_history.append(AIMessage(content=response)) uploaded_files = st.sidebar.file_uploader( label="Upload files", type="pdf", accept_multiple_files=True ) to_be_vectorised_files = [ item for item in uploaded_files if item.name not in st.session_state.last_uploaded_files ] if to_be_vectorised_files: create_embeddings(to_be_vectorised_files) if __name__ == "__main__": RETRIEVER = load_vector_db().as_retriever() main()