Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
-
from PIL import Image
|
3 |
import base64
|
|
|
4 |
from io import BytesIO
|
5 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
6 |
import torch
|
@@ -13,12 +13,23 @@ app = Flask(__name__)
|
|
13 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
14 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
# predict
|
22 |
with torch.no_grad():
|
23 |
outputs = model(**inputs)
|
24 |
preds = outputs.logits
|
@@ -26,50 +37,23 @@ def process_image(image, prompt, threshold, alpha_value, draw_rectangles):
|
|
26 |
pred = torch.sigmoid(preds)
|
27 |
mat = pred.cpu().numpy()
|
28 |
mask = Image.fromarray(np.uint8(mat * 255), "L")
|
|
|
29 |
mask = mask.resize(image.size)
|
30 |
mask = np.array(mask)[:, :, 0]
|
31 |
|
32 |
-
# normalize the mask
|
33 |
mask_min = mask.min()
|
34 |
mask_max = mask.max()
|
35 |
mask = (mask - mask_min) / (mask_max - mask_min)
|
36 |
|
37 |
-
# threshold the mask
|
38 |
bmask = mask > threshold
|
39 |
-
# zero out values below the threshold
|
40 |
mask[mask < threshold] = 0
|
41 |
|
42 |
-
bmask = Image.fromarray(bmask.astype(np.uint8) * 255, "L")
|
43 |
-
|
44 |
-
return bmask
|
45 |
-
|
46 |
-
@app.route('/')
|
47 |
-
def index():
|
48 |
-
return "Hello, World! clipseg2"
|
49 |
-
|
50 |
-
@app.route('/api/mask_image', methods=['POST'])
|
51 |
-
def mask_image_api():
|
52 |
-
data = request.get_json()
|
53 |
-
|
54 |
-
base64_image = data.get('base64_image', '')
|
55 |
-
prompt = data.get('prompt', '')
|
56 |
-
threshold = data.get('threshold', 0.4)
|
57 |
-
alpha_value = data.get('alpha_value', 0.5)
|
58 |
-
draw_rectangles = data.get('draw_rectangles', False)
|
59 |
-
|
60 |
-
# Decode base64 image
|
61 |
-
image_data = base64.b64decode(base64_image.split(',')[1])
|
62 |
-
image = Image.open(BytesIO(image_data))
|
63 |
-
|
64 |
-
# Process the image
|
65 |
-
output_mask = process_image(image, prompt, threshold, alpha_value, draw_rectangles)
|
66 |
-
|
67 |
# Convert the output mask to base64
|
68 |
buffered_mask = BytesIO()
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
return jsonify({'
|
73 |
|
74 |
if __name__ == '__main__':
|
75 |
-
app.run(
|
|
|
1 |
from flask import Flask, request, jsonify
|
|
|
2 |
import base64
|
3 |
+
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
6 |
import torch
|
|
|
13 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
14 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
15 |
|
16 |
+
@app.route('/api/mask_image', methods=['POST'])
|
17 |
+
def mask_image_api():
|
18 |
+
data = request.get_json()
|
19 |
+
|
20 |
+
base64_image = data.get('base64_image', '')
|
21 |
+
prompt = data.get('prompt', '')
|
22 |
+
threshold = data.get('threshold', 0.4)
|
23 |
+
alpha_value = data.get('alpha_value', 0.5)
|
24 |
+
draw_rectangles = data.get('draw_rectangles', False)
|
25 |
+
|
26 |
+
# Decode base64 image
|
27 |
+
image_data = base64.b64decode(base64_image)
|
28 |
+
|
29 |
+
# Process the image
|
30 |
+
image = Image.open(BytesIO(image_data))
|
31 |
+
inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt")
|
32 |
|
|
|
33 |
with torch.no_grad():
|
34 |
outputs = model(**inputs)
|
35 |
preds = outputs.logits
|
|
|
37 |
pred = torch.sigmoid(preds)
|
38 |
mat = pred.cpu().numpy()
|
39 |
mask = Image.fromarray(np.uint8(mat * 255), "L")
|
40 |
+
mask = mask.convert("RGB")
|
41 |
mask = mask.resize(image.size)
|
42 |
mask = np.array(mask)[:, :, 0]
|
43 |
|
|
|
44 |
mask_min = mask.min()
|
45 |
mask_max = mask.max()
|
46 |
mask = (mask - mask_min) / (mask_max - mask_min)
|
47 |
|
|
|
48 |
bmask = mask > threshold
|
|
|
49 |
mask[mask < threshold] = 0
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# Convert the output mask to base64
|
52 |
buffered_mask = BytesIO()
|
53 |
+
mask.save(buffered_mask, format="PNG")
|
54 |
+
base64_mask = base64.b64encode(buffered_mask.getvalue()).decode('utf-8')
|
55 |
|
56 |
+
return jsonify({'base64_mask': base64_mask})
|
57 |
|
58 |
if __name__ == '__main__':
|
59 |
+
app.run(debug=True)
|