Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
-
from
|
2 |
-
import gradio as gr
|
3 |
from PIL import Image
|
|
|
|
|
|
|
4 |
import torch
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import cv2
|
7 |
-
|
8 |
-
|
9 |
|
10 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
11 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
12 |
|
13 |
-
|
14 |
def process_image(image, prompt, threhsold, alpha_value, draw_rectangles):
|
15 |
inputs = processor(
|
16 |
text=prompt, images=image, padding="max_length", return_tensors="pt"
|
@@ -61,62 +63,34 @@ def process_image(image, prompt, threhsold, alpha_value, draw_rectangles):
|
|
61 |
output_image.paste(image, mask=bmask)
|
62 |
|
63 |
return fig, mask, output_image
|
|
|
|
|
|
|
|
|
64 |
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
gr.Markdown(article)
|
74 |
-
gr.Markdown(description)
|
75 |
-
gr.Markdown(
|
76 |
-
"*Example images are taken from the [ImageNet-A](https://paperswithcode.com/dataset/imagenet-a) dataset*"
|
77 |
-
)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
input_slider_T = gr.Slider(
|
84 |
-
minimum=0, maximum=1, value=0.4, label="Threshold"
|
85 |
-
)
|
86 |
-
input_slider_A = gr.Slider(minimum=0, maximum=1, value=0.5, label="Alpha")
|
87 |
-
draw_rectangles = gr.Checkbox(label="Draw rectangles")
|
88 |
-
btn_process = gr.Button(label="Process")
|
89 |
-
|
90 |
-
with gr.Column():
|
91 |
-
output_plot = gr.Plot(label="Segmentation Result")
|
92 |
-
output_mask = gr.Image(label="Mask")
|
93 |
-
output_image = gr.Image(label="Output Image")
|
94 |
-
|
95 |
-
btn_process.click(
|
96 |
-
process_image,
|
97 |
-
inputs=[
|
98 |
-
input_image,
|
99 |
-
input_prompt,
|
100 |
-
input_slider_T,
|
101 |
-
input_slider_A,
|
102 |
-
draw_rectangles,
|
103 |
-
],
|
104 |
-
outputs=[output_plot, output_mask, output_image],api_name="masking"
|
105 |
-
)
|
106 |
|
107 |
-
|
108 |
-
[
|
109 |
-
["0.003473_cliff _ cliff_0.51112.jpg", "dog", 0.5, 0.5, True],
|
110 |
-
["0.001861_submarine _ submarine_0.9862991.jpg", "beacon", 0.55, 0.4, True],
|
111 |
-
["0.004658_spatula _ spatula_0.35416836.jpg", "banana", 0.4, 0.5, True],
|
112 |
-
],
|
113 |
-
inputs=[
|
114 |
-
input_image,
|
115 |
-
input_prompt,
|
116 |
-
input_slider_T,
|
117 |
-
input_slider_A,
|
118 |
-
draw_rectangles,
|
119 |
-
],
|
120 |
-
)
|
121 |
|
122 |
-
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, render_template
|
|
|
2 |
from PIL import Image
|
3 |
+
import base64
|
4 |
+
from io import BytesIO
|
5 |
+
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
6 |
import torch
|
7 |
+
import numpy as np
|
8 |
import matplotlib.pyplot as plt
|
9 |
import cv2
|
10 |
+
|
11 |
+
app = Flask(__name__)
|
12 |
|
13 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
14 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
15 |
|
|
|
16 |
def process_image(image, prompt, threhsold, alpha_value, draw_rectangles):
|
17 |
inputs = processor(
|
18 |
text=prompt, images=image, padding="max_length", return_tensors="pt"
|
|
|
63 |
output_image.paste(image, mask=bmask)
|
64 |
|
65 |
return fig, mask, output_image
|
66 |
+
|
67 |
+
@app.route('/')
|
68 |
+
def index():
|
69 |
+
return "Hello, World! clipseg2"
|
70 |
|
71 |
+
@app.route('/api/mask_image', methods=['POST'])
|
72 |
+
def mask_image_api():
|
73 |
+
data = request.get_json()
|
74 |
|
75 |
+
base64_image = data.get('base64_image', '')
|
76 |
+
prompt = data.get('prompt', '')
|
77 |
+
threshold = data.get('threshold', 0.4)
|
78 |
+
alpha_value = data.get('alpha_value', 0.5)
|
79 |
+
draw_rectangles = data.get('draw_rectangles', False)
|
80 |
|
81 |
+
# Decode base64 image
|
82 |
+
image_data = base64.b64decode(base64_image.split(',')[1])
|
83 |
+
image = Image.open(BytesIO(image_data))
|
84 |
|
85 |
+
# Process the image
|
86 |
+
_, _, output_image = process_image(image, prompt, threshold, alpha_value, draw_rectangles)
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Convert the output image to base64
|
89 |
+
buffered = BytesIO()
|
90 |
+
output_image.save(buffered, format="PNG")
|
91 |
+
result_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
return jsonify({'result_image': result_image})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
if __name__ == '__main__':
|
96 |
+
app.run(host='0.0.0.0', port=7860, debug=True)
|