Spaces:
Runtime error
Runtime error
Migrate from yapf to black
Browse files- .pre-commit-config.yaml +26 -13
- .style.yapf +0 -5
- .vscode/settings.json +21 -0
- app.py +92 -89
.pre-commit-config.yaml
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
-
exclude: patch
|
2 |
repos:
|
3 |
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
-
rev: v4.
|
5 |
hooks:
|
6 |
- id: check-executables-have-shebangs
|
7 |
- id: check-json
|
@@ -9,29 +8,43 @@ repos:
|
|
9 |
- id: check-shebang-scripts-are-executable
|
10 |
- id: check-toml
|
11 |
- id: check-yaml
|
12 |
-
- id: double-quote-string-fixer
|
13 |
- id: end-of-file-fixer
|
14 |
- id: mixed-line-ending
|
15 |
-
args: [
|
16 |
- id: requirements-txt-fixer
|
17 |
- id: trailing-whitespace
|
18 |
- repo: https://github.com/myint/docformatter
|
19 |
-
rev: v1.
|
20 |
hooks:
|
21 |
- id: docformatter
|
22 |
-
args: [
|
23 |
- repo: https://github.com/pycqa/isort
|
24 |
rev: 5.12.0
|
25 |
hooks:
|
26 |
- id: isort
|
|
|
27 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
-
rev:
|
29 |
hooks:
|
30 |
- id: mypy
|
31 |
-
args: [
|
32 |
-
additional_dependencies: [
|
33 |
-
- repo: https://github.com/
|
34 |
-
rev:
|
35 |
hooks:
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
repos:
|
2 |
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.4.0
|
4 |
hooks:
|
5 |
- id: check-executables-have-shebangs
|
6 |
- id: check-json
|
|
|
8 |
- id: check-shebang-scripts-are-executable
|
9 |
- id: check-toml
|
10 |
- id: check-yaml
|
|
|
11 |
- id: end-of-file-fixer
|
12 |
- id: mixed-line-ending
|
13 |
+
args: ["--fix=lf"]
|
14 |
- id: requirements-txt-fixer
|
15 |
- id: trailing-whitespace
|
16 |
- repo: https://github.com/myint/docformatter
|
17 |
+
rev: v1.7.5
|
18 |
hooks:
|
19 |
- id: docformatter
|
20 |
+
args: ["--in-place"]
|
21 |
- repo: https://github.com/pycqa/isort
|
22 |
rev: 5.12.0
|
23 |
hooks:
|
24 |
- id: isort
|
25 |
+
args: ["--profile", "black"]
|
26 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
+
rev: v1.5.1
|
28 |
hooks:
|
29 |
- id: mypy
|
30 |
+
args: ["--ignore-missing-imports"]
|
31 |
+
additional_dependencies: ["types-python-slugify", "types-requests", "types-PyYAML"]
|
32 |
+
- repo: https://github.com/psf/black
|
33 |
+
rev: 23.9.1
|
34 |
hooks:
|
35 |
+
- id: black
|
36 |
+
language_version: python3.10
|
37 |
+
args: ["--line-length", "119"]
|
38 |
+
- repo: https://github.com/kynan/nbstripout
|
39 |
+
rev: 0.6.1
|
40 |
+
hooks:
|
41 |
+
- id: nbstripout
|
42 |
+
args: ["--extra-keys", "metadata.interpreter metadata.kernelspec cell.metadata.pycharm"]
|
43 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
44 |
+
rev: 1.7.0
|
45 |
+
hooks:
|
46 |
+
- id: nbqa-black
|
47 |
+
- id: nbqa-pyupgrade
|
48 |
+
args: ["--py37-plus"]
|
49 |
+
- id: nbqa-isort
|
50 |
+
args: ["--float-to-top"]
|
.style.yapf
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
[style]
|
2 |
-
based_on_style = pep8
|
3 |
-
blank_line_before_nested_class_or_def = false
|
4 |
-
spaces_before_comment = 2
|
5 |
-
split_before_logical_operator = true
|
|
|
|
|
|
|
|
|
|
|
|
.vscode/settings.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[python]": {
|
3 |
+
"editor.defaultFormatter": "ms-python.black-formatter",
|
4 |
+
"editor.formatOnType": true,
|
5 |
+
"editor.codeActionsOnSave": {
|
6 |
+
"source.organizeImports": true
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"black-formatter.args": [
|
10 |
+
"--line-length=119"
|
11 |
+
],
|
12 |
+
"isort.args": ["--profile", "black"],
|
13 |
+
"flake8.args": [
|
14 |
+
"--max-line-length=119"
|
15 |
+
],
|
16 |
+
"ruff.args": [
|
17 |
+
"--line-length=119"
|
18 |
+
],
|
19 |
+
"editor.formatOnSave": true,
|
20 |
+
"files.insertFinalNewline": true
|
21 |
+
}
|
app.py
CHANGED
@@ -10,92 +10,99 @@ import PIL.Image
|
|
10 |
import torch
|
11 |
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
12 |
|
13 |
-
DESCRIPTION =
|
14 |
|
15 |
-
if (SPACE_ID := os.getenv(
|
16 |
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
17 |
if not torch.cuda.is_available():
|
18 |
-
DESCRIPTION +=
|
19 |
|
20 |
-
device = torch.device(
|
21 |
|
22 |
-
MODEL_ID_OPT_6_7B =
|
23 |
-
MODEL_ID_FLAN_T5_XXL =
|
24 |
|
25 |
if torch.cuda.is_available():
|
26 |
model_dict = {
|
27 |
-
#MODEL_ID_OPT_6_7B: {
|
28 |
# 'processor':
|
29 |
# AutoProcessor.from_pretrained(MODEL_ID_OPT_6_7B),
|
30 |
# 'model':
|
31 |
# Blip2ForConditionalGeneration.from_pretrained(MODEL_ID_OPT_6_7B,
|
32 |
# device_map='auto',
|
33 |
# load_in_8bit=True),
|
34 |
-
#},
|
35 |
MODEL_ID_FLAN_T5_XXL: {
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
device_map='auto',
|
41 |
-
load_in_8bit=True),
|
42 |
}
|
43 |
}
|
44 |
else:
|
45 |
model_dict = {}
|
46 |
|
47 |
|
48 |
-
def generate_caption(
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
model_info = model_dict[model_id]
|
52 |
-
processor = model_info[
|
53 |
-
model = model_info[
|
54 |
|
55 |
-
inputs = processor(images=image,
|
56 |
-
return_tensors='pt').to(device, torch.float16)
|
57 |
generated_ids = model.generate(
|
58 |
pixel_values=inputs.pixel_values,
|
59 |
-
do_sample=decoding_method ==
|
60 |
temperature=temperature,
|
61 |
length_penalty=length_penalty,
|
62 |
repetition_penalty=repetition_penalty,
|
63 |
max_length=50,
|
64 |
min_length=1,
|
65 |
num_beams=5,
|
66 |
-
top_p=0.9
|
67 |
-
|
68 |
-
|
69 |
return result
|
70 |
|
71 |
|
72 |
-
def answer_question(
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
model_info = model_dict[model_id]
|
76 |
-
processor = model_info[
|
77 |
-
model = model_info[
|
78 |
|
79 |
-
inputs = processor(images=image, text=text,
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
result = processor.batch_decode(generated_ids,
|
92 |
-
skip_special_tokens=True)[0].strip()
|
93 |
return result
|
94 |
|
95 |
|
96 |
def postprocess_output(output: str) -> str:
|
97 |
-
if output and
|
98 |
-
output +=
|
99 |
return output
|
100 |
|
101 |
|
@@ -111,9 +118,9 @@ def chat(
|
|
111 |
history_qa: list[str] = [],
|
112 |
) -> tuple[dict[str, list[str]], dict[str, list[str]], dict[str, list[str]]]:
|
113 |
history_orig.append(text)
|
114 |
-
text_qa = f
|
115 |
history_qa.append(text_qa)
|
116 |
-
prompt =
|
117 |
|
118 |
output = answer_question(
|
119 |
model_id,
|
@@ -129,73 +136,73 @@ def chat(
|
|
129 |
history_qa.append(output)
|
130 |
|
131 |
chat_val = list(zip(history_orig[0::2], history_orig[1::2]))
|
132 |
-
return gr.update(value=chat_val), gr.update(value=history_orig), gr.update(
|
133 |
-
value=history_qa)
|
134 |
|
135 |
|
136 |
examples = [
|
137 |
[
|
138 |
-
|
139 |
-
|
140 |
],
|
141 |
[
|
142 |
-
|
143 |
-
|
144 |
],
|
145 |
[
|
146 |
-
|
147 |
-
|
148 |
],
|
149 |
[
|
150 |
-
|
151 |
-
|
152 |
],
|
153 |
[
|
154 |
-
|
155 |
-
|
156 |
],
|
157 |
]
|
158 |
|
159 |
-
with gr.Blocks(css=
|
160 |
gr.Markdown(DESCRIPTION)
|
161 |
|
162 |
-
image = gr.Image(type=
|
163 |
-
with gr.Accordion(label=
|
164 |
with gr.Row():
|
165 |
model_id_caption = gr.Dropdown(
|
166 |
-
label=
|
167 |
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL],
|
168 |
value=MODEL_ID_FLAN_T5_XXL,
|
169 |
interactive=False,
|
170 |
-
visible=False
|
|
|
171 |
model_id_chat = gr.Dropdown(
|
172 |
-
label=
|
173 |
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL],
|
174 |
value=MODEL_ID_FLAN_T5_XXL,
|
175 |
interactive=False,
|
176 |
-
visible=False
|
|
|
177 |
sampling_method = gr.Radio(
|
178 |
-
label=
|
179 |
-
choices=[
|
180 |
-
value=
|
181 |
)
|
182 |
temperature = gr.Slider(
|
183 |
-
label=
|
184 |
minimum=0.5,
|
185 |
maximum=1.0,
|
186 |
value=1.0,
|
187 |
step=0.1,
|
188 |
)
|
189 |
length_penalty = gr.Slider(
|
190 |
-
label=
|
191 |
-
'Length Penalty (set to larger for longer sequence, used with beam search)',
|
192 |
minimum=-1.0,
|
193 |
maximum=2.0,
|
194 |
value=1.0,
|
195 |
step=0.2,
|
196 |
)
|
197 |
rep_penalty = gr.Slider(
|
198 |
-
label=
|
199 |
minimum=1.0,
|
200 |
maximum=5.0,
|
201 |
value=1.5,
|
@@ -204,21 +211,17 @@ with gr.Blocks(css='style.css') as demo:
|
|
204 |
with gr.Row():
|
205 |
with gr.Column():
|
206 |
with gr.Box():
|
207 |
-
caption_button = gr.Button(value=
|
208 |
-
caption_output = gr.Textbox(
|
209 |
-
label='Caption Output',
|
210 |
-
show_label=False).style(container=False)
|
211 |
with gr.Column():
|
212 |
with gr.Box():
|
213 |
-
chatbot = gr.Chatbot(label=
|
214 |
history_orig = gr.State(value=[])
|
215 |
history_qa = gr.State(value=[])
|
216 |
-
vqa_input = gr.Text(label=
|
217 |
-
show_label=False,
|
218 |
-
max_lines=1).style(container=False)
|
219 |
with gr.Row():
|
220 |
-
clear_chat_button = gr.Button(value=
|
221 |
-
chat_button = gr.Button(value=
|
222 |
|
223 |
gr.Examples(
|
224 |
examples=examples,
|
@@ -239,7 +242,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
239 |
rep_penalty,
|
240 |
],
|
241 |
outputs=caption_output,
|
242 |
-
api_name=
|
243 |
)
|
244 |
|
245 |
chat_inputs = [
|
@@ -267,10 +270,10 @@ with gr.Blocks(css='style.css') as demo:
|
|
267 |
fn=chat,
|
268 |
inputs=chat_inputs,
|
269 |
outputs=chat_outputs,
|
270 |
-
api_name=
|
271 |
)
|
272 |
clear_chat_button.click(
|
273 |
-
fn=lambda: (
|
274 |
inputs=None,
|
275 |
outputs=[
|
276 |
vqa_input,
|
@@ -279,10 +282,10 @@ with gr.Blocks(css='style.css') as demo:
|
|
279 |
history_qa,
|
280 |
],
|
281 |
queue=False,
|
282 |
-
api_name=
|
283 |
)
|
284 |
image.change(
|
285 |
-
fn=lambda: (
|
286 |
inputs=None,
|
287 |
outputs=[
|
288 |
caption_output,
|
|
|
10 |
import torch
|
11 |
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
12 |
|
13 |
+
DESCRIPTION = "# [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2)"
|
14 |
|
15 |
+
if (SPACE_ID := os.getenv("SPACE_ID")) is not None:
|
16 |
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
17 |
if not torch.cuda.is_available():
|
18 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
19 |
|
20 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
21 |
|
22 |
+
MODEL_ID_OPT_6_7B = "Salesforce/blip2-opt-6.7b"
|
23 |
+
MODEL_ID_FLAN_T5_XXL = "Salesforce/blip2-flan-t5-xxl"
|
24 |
|
25 |
if torch.cuda.is_available():
|
26 |
model_dict = {
|
27 |
+
# MODEL_ID_OPT_6_7B: {
|
28 |
# 'processor':
|
29 |
# AutoProcessor.from_pretrained(MODEL_ID_OPT_6_7B),
|
30 |
# 'model':
|
31 |
# Blip2ForConditionalGeneration.from_pretrained(MODEL_ID_OPT_6_7B,
|
32 |
# device_map='auto',
|
33 |
# load_in_8bit=True),
|
34 |
+
# },
|
35 |
MODEL_ID_FLAN_T5_XXL: {
|
36 |
+
"processor": AutoProcessor.from_pretrained(MODEL_ID_FLAN_T5_XXL),
|
37 |
+
"model": Blip2ForConditionalGeneration.from_pretrained(
|
38 |
+
MODEL_ID_FLAN_T5_XXL, device_map="auto", load_in_8bit=True
|
39 |
+
),
|
|
|
|
|
40 |
}
|
41 |
}
|
42 |
else:
|
43 |
model_dict = {}
|
44 |
|
45 |
|
46 |
+
def generate_caption(
|
47 |
+
model_id: str,
|
48 |
+
image: PIL.Image.Image,
|
49 |
+
decoding_method: str,
|
50 |
+
temperature: float,
|
51 |
+
length_penalty: float,
|
52 |
+
repetition_penalty: float,
|
53 |
+
) -> str:
|
54 |
model_info = model_dict[model_id]
|
55 |
+
processor = model_info["processor"]
|
56 |
+
model = model_info["model"]
|
57 |
|
58 |
+
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
|
|
59 |
generated_ids = model.generate(
|
60 |
pixel_values=inputs.pixel_values,
|
61 |
+
do_sample=decoding_method == "Nucleus sampling",
|
62 |
temperature=temperature,
|
63 |
length_penalty=length_penalty,
|
64 |
repetition_penalty=repetition_penalty,
|
65 |
max_length=50,
|
66 |
min_length=1,
|
67 |
num_beams=5,
|
68 |
+
top_p=0.9,
|
69 |
+
)
|
70 |
+
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
71 |
return result
|
72 |
|
73 |
|
74 |
+
def answer_question(
|
75 |
+
model_id: str,
|
76 |
+
image: PIL.Image.Image,
|
77 |
+
text: str,
|
78 |
+
decoding_method: str,
|
79 |
+
temperature: float,
|
80 |
+
length_penalty: float,
|
81 |
+
repetition_penalty: float,
|
82 |
+
) -> str:
|
83 |
model_info = model_dict[model_id]
|
84 |
+
processor = model_info["processor"]
|
85 |
+
model = model_info["model"]
|
86 |
|
87 |
+
inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16)
|
88 |
+
generated_ids = model.generate(
|
89 |
+
**inputs,
|
90 |
+
do_sample=decoding_method == "Nucleus sampling",
|
91 |
+
temperature=temperature,
|
92 |
+
length_penalty=length_penalty,
|
93 |
+
repetition_penalty=repetition_penalty,
|
94 |
+
max_length=30,
|
95 |
+
min_length=1,
|
96 |
+
num_beams=5,
|
97 |
+
top_p=0.9,
|
98 |
+
)
|
99 |
+
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
|
|
100 |
return result
|
101 |
|
102 |
|
103 |
def postprocess_output(output: str) -> str:
|
104 |
+
if output and output[-1] not in string.punctuation:
|
105 |
+
output += "."
|
106 |
return output
|
107 |
|
108 |
|
|
|
118 |
history_qa: list[str] = [],
|
119 |
) -> tuple[dict[str, list[str]], dict[str, list[str]], dict[str, list[str]]]:
|
120 |
history_orig.append(text)
|
121 |
+
text_qa = f"Question: {text} Answer:"
|
122 |
history_qa.append(text_qa)
|
123 |
+
prompt = " ".join(history_qa)
|
124 |
|
125 |
output = answer_question(
|
126 |
model_id,
|
|
|
136 |
history_qa.append(output)
|
137 |
|
138 |
chat_val = list(zip(history_orig[0::2], history_orig[1::2]))
|
139 |
+
return gr.update(value=chat_val), gr.update(value=history_orig), gr.update(value=history_qa)
|
|
|
140 |
|
141 |
|
142 |
examples = [
|
143 |
[
|
144 |
+
"house.png",
|
145 |
+
"How could someone get out of the house?",
|
146 |
],
|
147 |
[
|
148 |
+
"flower.jpg",
|
149 |
+
"What is this flower and where is it's origin?",
|
150 |
],
|
151 |
[
|
152 |
+
"pizza.jpg",
|
153 |
+
"What are steps to cook it?",
|
154 |
],
|
155 |
[
|
156 |
+
"sunset.jpg",
|
157 |
+
"Here is a romantic message going along the photo:",
|
158 |
],
|
159 |
[
|
160 |
+
"forbidden_city.webp",
|
161 |
+
"In what dynasties was this place built?",
|
162 |
],
|
163 |
]
|
164 |
|
165 |
+
with gr.Blocks(css="style.css") as demo:
|
166 |
gr.Markdown(DESCRIPTION)
|
167 |
|
168 |
+
image = gr.Image(type="pil")
|
169 |
+
with gr.Accordion(label="Advanced settings", open=False):
|
170 |
with gr.Row():
|
171 |
model_id_caption = gr.Dropdown(
|
172 |
+
label="Model ID for image captioning",
|
173 |
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL],
|
174 |
value=MODEL_ID_FLAN_T5_XXL,
|
175 |
interactive=False,
|
176 |
+
visible=False,
|
177 |
+
)
|
178 |
model_id_chat = gr.Dropdown(
|
179 |
+
label="Model ID for VQA",
|
180 |
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL],
|
181 |
value=MODEL_ID_FLAN_T5_XXL,
|
182 |
interactive=False,
|
183 |
+
visible=False,
|
184 |
+
)
|
185 |
sampling_method = gr.Radio(
|
186 |
+
label="Text Decoding Method",
|
187 |
+
choices=["Beam search", "Nucleus sampling"],
|
188 |
+
value="Beam search",
|
189 |
)
|
190 |
temperature = gr.Slider(
|
191 |
+
label="Temperature (used with nucleus sampling)",
|
192 |
minimum=0.5,
|
193 |
maximum=1.0,
|
194 |
value=1.0,
|
195 |
step=0.1,
|
196 |
)
|
197 |
length_penalty = gr.Slider(
|
198 |
+
label="Length Penalty (set to larger for longer sequence, used with beam search)",
|
|
|
199 |
minimum=-1.0,
|
200 |
maximum=2.0,
|
201 |
value=1.0,
|
202 |
step=0.2,
|
203 |
)
|
204 |
rep_penalty = gr.Slider(
|
205 |
+
label="Repeat Penalty (larger value prevents repetition)",
|
206 |
minimum=1.0,
|
207 |
maximum=5.0,
|
208 |
value=1.5,
|
|
|
211 |
with gr.Row():
|
212 |
with gr.Column():
|
213 |
with gr.Box():
|
214 |
+
caption_button = gr.Button(value="Caption it!")
|
215 |
+
caption_output = gr.Textbox(label="Caption Output", show_label=False).style(container=False)
|
|
|
|
|
216 |
with gr.Column():
|
217 |
with gr.Box():
|
218 |
+
chatbot = gr.Chatbot(label="VQA Chat")
|
219 |
history_orig = gr.State(value=[])
|
220 |
history_qa = gr.State(value=[])
|
221 |
+
vqa_input = gr.Text(label="Chat Input", show_label=False, max_lines=1).style(container=False)
|
|
|
|
|
222 |
with gr.Row():
|
223 |
+
clear_chat_button = gr.Button(value="Clear")
|
224 |
+
chat_button = gr.Button(value="Submit")
|
225 |
|
226 |
gr.Examples(
|
227 |
examples=examples,
|
|
|
242 |
rep_penalty,
|
243 |
],
|
244 |
outputs=caption_output,
|
245 |
+
api_name="caption",
|
246 |
)
|
247 |
|
248 |
chat_inputs = [
|
|
|
270 |
fn=chat,
|
271 |
inputs=chat_inputs,
|
272 |
outputs=chat_outputs,
|
273 |
+
api_name="chat",
|
274 |
)
|
275 |
clear_chat_button.click(
|
276 |
+
fn=lambda: ("", [], [], []),
|
277 |
inputs=None,
|
278 |
outputs=[
|
279 |
vqa_input,
|
|
|
282 |
history_qa,
|
283 |
],
|
284 |
queue=False,
|
285 |
+
api_name="clear",
|
286 |
)
|
287 |
image.change(
|
288 |
+
fn=lambda: ("", [], [], []),
|
289 |
inputs=None,
|
290 |
outputs=[
|
291 |
caption_output,
|