import gradio as gr import numpy as np import random import spaces from diffusers import DiffusionPipeline from transformers import T5EncoderModel, CLIPTextModelWithProjection import torch device = "cuda" if torch.cuda.is_available() else "cpu" text_encoder_repo = "silveroxides/CLIP_L_Fur" text_encoder_2_repo = "silveroxides/SeaArtFurryCLIP_G" text_encoder_3_repo = "silveroxides/t5xxl_flan_enc" model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo" if torch.cuda.is_available(): torch_dtype = torch.bfloat16 else: torch_dtype = torch.float32 text_encoder = CLIPTextModelWithProjection.from_pretrained(text_encoder_repo, torch_dtype=torch_dtype) text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(text_encoder_2_repo, torch_dtype=torch_dtype) text_encoder_3 = T5EncoderModel.from_pretrained(text_encoder_3_repo, torch_dtype=torch_dtype) pipe = DiffusionPipeline.from_pretrained(model_repo_id, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, torch_dtype=torch_dtype) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1728 @spaces.GPU def infer( prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "A capybara wearing a suit holding a sign that reads Hello World", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # [Stable Diffusion 3.5 Large Turbo (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large-turbo)") gr.Markdown("Space for testing alternative text encoders with SD 3.5 L Turbo") with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=8, lines=6, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Textbox( label="Negative prompt", max_lines=2, lines=2, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=-1.0, maximum=7.5, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy") gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()