import numpy as np import torch from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN def load_model(model_name="ceyda/butterfly_cropped_uniq1K_512", model_version=None): gan=LightweightGAN.from_pretrained(model_name,version=model_version) gan.eval() return gan def generate(gan,batch_size=1): with torch.no_grad(): ims=gan.G(torch.randn(batch_size,gan.latent_dim)).clamp(0.0,1.0)*255 ims=ims.permute(0,2,3,1).deatch().cpu().numpy().astype(np.uint8) return ims