Spaces:
Sleeping
Sleeping
singhjagpreet
commited on
Commit
•
c0c01c6
1
Parent(s):
1cb46fc
file processing implemented
Browse files- app.py +60 -59
- requirements.txt +4 -4
- src/utils.py +30 -46
app.py
CHANGED
@@ -1,99 +1,100 @@
|
|
1 |
import os
|
2 |
import logging
|
3 |
|
|
|
|
|
|
|
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
import chainlit as cl
|
7 |
-
from src.utils import get_docSearch, get_source
|
8 |
-
from src.model import load_chain
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
welcome_message = """ Upload your file here"""
|
12 |
|
13 |
@cl.on_chat_start
|
14 |
async def start():
|
15 |
-
await cl.Message(
|
16 |
-
logging.info(f"app started")
|
17 |
files = None
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
max_size_mb=10,
|
23 |
-
timeout=90
|
24 |
-
).send()
|
25 |
-
logging.info("uploader excecuted")
|
26 |
-
file = files[0]
|
27 |
-
msg = cl.Message(content=f"Processing {file.name}....")
|
28 |
-
await msg.send()
|
29 |
|
30 |
-
logging.info("
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
logging.info("document uploaded success")
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
logging.info(
|
39 |
|
40 |
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
await msg.update()
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
logging.info("chain saved for active session")
|
51 |
|
52 |
-
|
53 |
-
|
54 |
|
|
|
55 |
|
56 |
-
|
57 |
|
58 |
-
logging.info(
|
59 |
-
cb = cl.AsyncLangchainCallbackHandler(
|
60 |
-
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
|
61 |
-
)
|
62 |
-
|
63 |
-
logging.info("define call backs")
|
64 |
|
65 |
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
71 |
|
|
|
72 |
|
73 |
-
|
74 |
|
|
|
75 |
|
|
|
76 |
|
77 |
answer = res["answer"]
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
## get doc from user session
|
82 |
-
docs = cl.user_session.get("docs")
|
83 |
-
metadatas = [doc.metadata for doc in docs]
|
84 |
-
all_sources = [m["source"]for m in metadatas]
|
85 |
|
86 |
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
source_elements = get_source(sources,all_sources,docs,cl)
|
89 |
|
90 |
-
logging.info("getting source")
|
91 |
|
92 |
-
if cb.has_streamed_final_answer:
|
93 |
-
cb.final_stream.elements = source_elements
|
94 |
-
await cb.final_stream.update()
|
95 |
-
logging.info("call back triggred")
|
96 |
-
else:
|
97 |
-
await cl.Message(content=answer, elements=source_elements).send()
|
98 |
-
logging.info("post message")
|
99 |
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
|
4 |
+
#pip install pypdf
|
5 |
+
#export HNSWLIB_NO_NATIVE = 1
|
6 |
+
|
7 |
+
from langchain.document_loaders import PyPDFDirectoryLoader, TextLoader
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
|
10 |
+
from langchain.vectorstores import Chroma
|
11 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
12 |
+
from langchain.chains import ConversationalRetrievalChain
|
13 |
+
from langchain.chat_models import ChatOpenAI
|
14 |
import chainlit as cl
|
|
|
|
|
15 |
|
16 |
+
from src.utils import get_docsearch, get_source
|
17 |
+
|
18 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
19 |
+
# embeddings = OpenAIEmbeddings()
|
20 |
+
|
21 |
+
welcome_message = """Welcome"""
|
22 |
|
|
|
23 |
|
24 |
@cl.on_chat_start
|
25 |
async def start():
|
26 |
+
await cl.Message("test").send()
|
|
|
27 |
files = None
|
28 |
+
files = await cl.AskFileMessage(
|
29 |
+
content=welcome_message,
|
30 |
+
accept=["text/plain", "application/pdf"],
|
31 |
+
).send()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
logging.info("file uploaded")
|
34 |
|
35 |
+
file = files[0]
|
|
|
|
|
36 |
|
37 |
+
msg = cl.Message(content=f"Processing {file.name}")
|
38 |
+
await msg.send()
|
39 |
|
40 |
+
logging.info("file processing")
|
41 |
|
42 |
|
43 |
+
docsearch = await cl.make_async(get_docsearch)(file)
|
44 |
|
45 |
+
message_history = ChatMessageHistory()
|
|
|
46 |
|
47 |
+
memory = ConversationBufferMemory(
|
48 |
+
memory_key="chat_history",
|
49 |
+
output_key="answer",
|
50 |
+
chat_memory=message_history,
|
51 |
+
return_messages=True
|
52 |
+
)
|
53 |
|
54 |
+
## create chain that uses chroma vector store
|
55 |
+
chain = ConversationalRetrievalChain.from_llm(
|
56 |
+
ChatOpenAI(model_name="gpt-3.5-turbo",temperature=0, streaming=True),
|
57 |
+
chain_type="stuff",
|
58 |
+
retriever=docsearch.as_retriever(),
|
59 |
+
memory=memory,
|
60 |
+
return_source_documents=True,
|
61 |
+
)
|
62 |
|
|
|
63 |
|
64 |
+
msg.content = f"Processing {file.name} completed. Start asking questions!"
|
65 |
+
await msg.update()
|
66 |
|
67 |
+
logging.info("file processed success")
|
68 |
|
69 |
+
cl.user_session.set("chain",chain)
|
70 |
|
71 |
+
logging.info("saved chain in currrent session")
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
+
@cl.on_message
|
75 |
+
async def main(message: cl.Message):
|
76 |
|
77 |
+
## get chain
|
78 |
+
chain = cl.user_session.get("chain")
|
79 |
|
80 |
+
logging.info("loaded chain")
|
81 |
|
82 |
+
cb = cl.AsyncLangchainCallbackHandler()
|
83 |
|
84 |
+
logging.info("loaded callbacks")
|
85 |
|
86 |
+
res = await chain.acall(message.content, callbacks=[cb])
|
87 |
|
88 |
answer = res["answer"]
|
89 |
+
source_documents = res["source_documents"]
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
+
|
93 |
+
text_elements = get_source(answer, source_documents)
|
94 |
+
await cl.Message(content=answer, elements=text_elements).send()
|
95 |
+
|
96 |
+
|
97 |
|
|
|
98 |
|
|
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
langchain
|
2 |
-
|
3 |
-
|
4 |
chainlit
|
|
|
5 |
chromadb
|
6 |
-
tiktoken
|
7 |
-
tokenizers
|
|
|
1 |
langchain
|
2 |
+
chroma
|
3 |
+
pypdf
|
4 |
chainlit
|
5 |
+
openai
|
6 |
chromadb
|
7 |
+
tiktoken
|
|
src/utils.py
CHANGED
@@ -3,20 +3,19 @@ import click
|
|
3 |
from langchain.document_loaders import TextLoader
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.vectorstores import Chroma
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
from src.config import Config
|
9 |
import logging
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
load_dotenv()
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
def process_file(file: AskFileResponse):
|
19 |
-
import tempfile
|
20 |
|
21 |
if file.type == "text/plain":
|
22 |
Loader = TextLoader
|
@@ -27,52 +26,37 @@ def process_file(file: AskFileResponse):
|
|
27 |
tempfile.write(file.content)
|
28 |
loader = Loader(tempfile.name)
|
29 |
documents = loader.load()
|
30 |
-
|
31 |
-
docs = Config.text_splitter.split_documents(documents)
|
32 |
-
|
33 |
for i, doc in enumerate(docs):
|
34 |
doc.metadata["source"] = f"source_{i}"
|
35 |
return docs
|
36 |
|
37 |
-
def
|
38 |
docs = process_file(file)
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
43 |
-
cl.user_session.set("docs",docs)
|
44 |
-
|
45 |
-
logging.info("docs saved in active session")
|
46 |
-
|
47 |
-
docsearch = Chroma.from_documents(docs, Config.embeddings)
|
48 |
-
|
49 |
-
logging.info(f"embedding completed {type(Config.embeddings)}")
|
50 |
-
|
51 |
-
logging.info(f"type of docsearch {type(docsearch)}")
|
52 |
|
|
|
|
|
|
|
53 |
return docsearch
|
54 |
|
55 |
-
def get_source(
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# Create the text element referenced in the message
|
72 |
-
source_elements.append(cl.Text(content=text, name=source_name))
|
73 |
-
|
74 |
-
if found_sources:
|
75 |
-
answer += f"\nSources: {', '.join(found_sources)}"
|
76 |
-
else:
|
77 |
-
answer += "\nNo sources found"
|
78 |
-
return source_elements,answer
|
|
|
3 |
from langchain.document_loaders import TextLoader
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.vectorstores import Chroma
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
8 |
+
import chainlit as cl
|
9 |
|
10 |
|
11 |
from src.config import Config
|
12 |
import logging
|
13 |
|
14 |
+
text_splitter = RecursiveCharacterTextSplitter()
|
15 |
+
embeddings = OpenAIEmbeddings()
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def process_file(file: AskFileResponse):
|
18 |
+
import tempfile
|
19 |
|
20 |
if file.type == "text/plain":
|
21 |
Loader = TextLoader
|
|
|
26 |
tempfile.write(file.content)
|
27 |
loader = Loader(tempfile.name)
|
28 |
documents = loader.load()
|
29 |
+
docs = text_splitter.split_documents(documents)
|
|
|
|
|
30 |
for i, doc in enumerate(docs):
|
31 |
doc.metadata["source"] = f"source_{i}"
|
32 |
return docs
|
33 |
|
34 |
+
def get_docsearch(file: AskFileResponse):
|
35 |
docs = process_file(file)
|
36 |
|
37 |
+
# Save data in the user session
|
38 |
+
cl.user_session.set("docs", docs)
|
39 |
|
40 |
+
# Create a unique namespace for the file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
docsearch = Chroma.from_documents(
|
43 |
+
docs, embeddings
|
44 |
+
)
|
45 |
return docsearch
|
46 |
|
47 |
+
def get_source(answer,source_documents):
|
48 |
+
text_elements = []
|
49 |
+
if source_documents:
|
50 |
+
for source_idx, source_doc in enumerate(source_documents):
|
51 |
+
source_name = f"source_{source_idx}"
|
52 |
+
|
53 |
+
text_elements.append(
|
54 |
+
cl.Text(content=source_doc.page_content, name=source_name)
|
55 |
+
)
|
56 |
+
source_names = [text_el.name for text_el in text_elements]
|
57 |
+
|
58 |
+
if source_names:
|
59 |
+
answer += f"\nSources: {', '.join(source_names)}"
|
60 |
+
else:
|
61 |
+
answer += "\nNo source found"
|
62 |
+
return text_elements
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|