File size: 1,463 Bytes
d7e1d8f
 
 
 
 
 
 
 
 
fac529d
 
 
d7e1d8f
 
 
 
 
 
 
 
 
 
 
0be4ca4
d7e1d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0be4ca4
d7e1d8f
 
 
 
32a1064
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from flask import Flask,request,render_template
import numpy as np
import sys

from sklearn.preprocessing import StandardScaler
from src.exception import CustomException

from src.pipeline.predict_pipeline import CustomData,PredictPipeline

application = Flask(__name__)

app = application

## route for home page

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/predictdata',methods=['GET','POST'])
def predict_datapoint():
    try:
        if request.method == 'GET':
            return render_template('index.html')
        else:
            
            data=CustomData(
                gender=request.form.get('gender'),
                race_ethnicity=request.form.get('race_ethnicity'),
                parental_level_of_education=request.form.get('parental_level_of_education'),
                lunch=request.form.get('lunch'),
                test_preparation_course=request.form.get('test_preparation_course'),
                reading_score=request.form.get('reading_score'),
                writing_score=request.form.get('writing_Score')
                )
            pred_df = data.get_data_as_data_frame()

            predict_pipeline = PredictPipeline()

            results = predict_pipeline.predict(pred_df)
            return render_template('index.html',results=results[0])
    except Exception as e:
        raise CustomException(e,sys)
    
if __name__ == '__main__':
    app.run(host='0.0.0.0',port=5000)