Spaces:
Sleeping
Sleeping
File size: 1,962 Bytes
d7e1d8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import sys
from typing import Any
import pandas as pd
from src.exception import CustomException
from src.utils import load_object
class PredictPipeline:
def __init__(self) -> None:
pass
def predict(self,features):
try:
model_path = "artifacts/model.pkl"
preprocessor_path = 'artifacts/preprocessor.pkl'
model = load_object(file_path = model_path)
preprocessor = load_object(file_path=preprocessor_path)
data_scaled = preprocessor.transform(features)
preds = model.predict(data_scaled)
return preds
except Exception as e:
raise CustomException(e, sys)
class CustomData:
def __init__(self,
gender:str,
race_ethnicity:str,
parental_level_of_education,
lunch:str,
test_preparation_course:str,
reading_score:int,
writing_score:int,
):
self.gender = gender
self.race_ethnicity = race_ethnicity
self.parental_level_of_education = parental_level_of_education
self.lunch = lunch
self.test_preparation_course = test_preparation_course
self.reading_score = reading_score
self.writing_score = writing_score
def get_data_as_data_frame(self):
try:
custom_data_input_data = {
"gender":[self.gender],
"race_ethnicity":[self.race_ethnicity],
"parental_level_of_education":[self.parental_level_of_education],
"lunch":[self.lunch],
"test_preparation_course":[self.test_preparation_course],
"reading_score":[self.reading_score],
"writing_score":[self.writing_score]
}
return pd.DataFrame(custom_data_input_data)
except Exception as e:
raise CustomException(e, sys) |