Spaces:
Sleeping
Sleeping
import sys | |
import os | |
from dataclasses import dataclass | |
import numpy as np | |
import pandas as pd | |
from sklearn.compose import ColumnTransformer | |
from sklearn.impute import SimpleImputer | |
from sklearn.preprocessing import OneHotEncoder,StandardScaler | |
from sklearn.pipeline import Pipeline | |
from src.exception import CustomException | |
from src.logger import logging | |
from src.utils import save_object | |
class DataTransformationConfig: | |
preprocessor_ob_file_path = os.path.join('artifacts','preprocessor.pkl') | |
class DataTransformation: | |
def __init__(self): | |
self.data_transformation_config = DataTransformationConfig() | |
self.numerical_columns = ['writing_score','reading_score'] | |
self.categorical_columns = ['gender', | |
'race_ethnicity', | |
'parental_level_of_education', | |
'lunch', | |
'test_preparation_course'] | |
self.target_column_name = 'math_score' | |
def get_data_transformer_object(self): | |
""" | |
function performs data transformation | |
""" | |
try: | |
num_pipeline = Pipeline(steps=[ | |
('imputer',SimpleImputer(strategy='median')), | |
('scaller',StandardScaler()) | |
]) | |
logging.info(f"numerical columns: {self.numerical_columns}") | |
cat_pipeline = Pipeline(steps=[ | |
('imputer',SimpleImputer(strategy='most_frequent')), | |
('ohe',OneHotEncoder(drop='first',handle_unknown='ignore')) | |
]) | |
logging.info(f"categorical columns: {self.categorical_columns}") | |
preprocessor = ColumnTransformer([ | |
('num_pipeline',num_pipeline,self.numerical_columns), | |
('cat_pipeline',cat_pipeline,self.categorical_columns) | |
] | |
) | |
return preprocessor | |
except Exception as e: | |
raise CustomException(e,sys) | |
def initiate_data_tranformation(self, train_path, test_path): | |
try: | |
train_df = pd.read_csv(train_path) | |
test_df = pd.read_csv(test_path) | |
logging.info('read train and test data completed') | |
logging.info('obtaining preprocessing object') | |
preprocessing_obj = self.get_data_transformer_object() | |
input_feature_train_df = train_df.drop(self.target_column_name,axis=1) | |
target_feature_train_df = train_df[self.target_column_name] | |
input_feature_test_df = test_df.drop(self.target_column_name,axis=1) | |
target_feature_test_df = test_df[self.target_column_name] | |
logging.info(f"applying preprocessing object on training and testing dataframe") | |
input_feature_train_arr = preprocessing_obj.fit_transform(input_feature_train_df) | |
input_feature_test_arr = preprocessing_obj.transform(input_feature_test_df) | |
train_arr = np.c_[ | |
input_feature_train_arr, np.array(target_feature_train_df) | |
] | |
test_arr = np.c_[ | |
input_feature_test_arr, np.array(target_feature_test_df) | |
] | |
save_object( | |
file_path = self.data_transformation_config.preprocessor_ob_file_path, | |
obj = preprocessing_obj | |
) | |
logging.info(f"saved preprocessing object.") | |
return ( | |
train_arr, | |
test_arr, | |
self.data_transformation_config.preprocessor_ob_file_path | |
) | |
except Exception as e: | |
raise CustomException(e,sys) | |