singhjagpreet's picture
hyperparameter tunning
47ff4e9
import os
import sys
from dataclasses import dataclass
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.linear_model import LinearRegression,Ridge,Lasso
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,AdaBoostRegressor
from xgboost import XGBRegressor
from sklearn.neighbors import KNeighborsRegressor
from catboost import CatBoostRegressor
from src.exception import CustomException
from src.logger import logging
from src.utils import save_object,evaluate_models
@dataclass
class ModelTrainerConfig:
trained_model_file_path = os.path.join('artifacts','model.pkl')
class ModelTrainer:
def __init__(self) -> None:
self.model_trainer_config = ModelTrainerConfig()
def initiate_model_trainer(self,train_array, test_array):
try:
logging.info('spliting training and test input data')
X_train, y_train, X_test, y_test= (
train_array[:,:-1],
train_array[:,-1],
test_array[:,:-1],
test_array[:,-1]
)
models = {
"Random Forest": RandomForestRegressor(),
"Decision Tree": DecisionTreeRegressor(),
"Gradient Boosting": GradientBoostingRegressor(),
"Linear Regression": LinearRegression(),
"XGBRegressor": XGBRegressor(),
"CatBoosting Regressor": CatBoostRegressor(verbose=False),
"AdaBoost Regressor": AdaBoostRegressor(),
}
params={
"Decision Tree": {
'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],
# 'splitter':['best','random'],
# 'max_features':['sqrt','log2'],
},
"Random Forest":{
# 'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],
# 'max_features':['sqrt','log2',None],
'n_estimators': [8,16,32,64,128,256]
},
"Gradient Boosting":{
# 'loss':['squared_error', 'huber', 'absolute_error', 'quantile'],
'learning_rate':[.1,.01,.05,.001],
'subsample':[0.6,0.7,0.75,0.8,0.85,0.9],
# 'criterion':['squared_error', 'friedman_mse'],
# 'max_features':['auto','sqrt','log2'],
'n_estimators': [8,16,32,64,128,256]
},
"Linear Regression":{},
"XGBRegressor":{
'learning_rate':[.1,.01,.05,.001],
'n_estimators': [8,16,32,64,128,256]
},
"CatBoosting Regressor":{
'depth': [6,8,10],
'learning_rate': [0.01, 0.05, 0.1],
'iterations': [30, 50, 100]
},
"AdaBoost Regressor":{
'learning_rate':[.1,.01,0.5,.001],
# 'loss':['linear','square','exponential'],
'n_estimators': [8,16,32,64,128,256]
}
}
logging.info('training models')
model_report:dict=evaluate_models(X_train=X_train,y_train=y_train,X_test=X_test,y_test=y_test,
models=models,params=params)
logging.info("model trained")
best_model_score = max(sorted(model_report.values()))
best_model_name = list(model_report.keys())[
list(model_report.values()).index(best_model_score)
]
best_model = models[best_model_name]
if best_model_score < 0.6:
raise CustomException("NO best model found")
logging.info("best model found")
save_object(
file_path=self.model_trainer_config.trained_model_file_path,
obj=best_model
)
predicted = best_model.predict(X_test)
r2 = r2_score(y_test,predicted)
return r2
except Exception as e:
raise CustomException(e,sys)