import os import sys import numpy as np import pandas as pd import pickle from sklearn.metrics import r2_score from sklearn.model_selection import GridSearchCV from src.logger import logging from src.exception import CustomException def save_object(file_path, obj): try: dir_path = os.path.dirname(file_path) os.makedirs(dir_path,exist_ok=True) with open(file_path, 'wb') as file_obj: pickle.dump(obj,file_obj) except Exception as e: raise CustomException(e,sys) def evaluate_models(X_train, y_train, X_test, y_test, models,params): try: report = {} for i in range(len(list(models))): model = list(models.values())[i] param = params[list(models.keys())[i]] logging.info('training started') gs = GridSearchCV(model,param_grid=param,cv=5,verbose=False) gs.fit(X_train,y_train) model.set_params(**gs.best_params_) model.fit(X_train,y_train) y_train_pred = model.predict(X_train) y_test_pred = model.predict(X_test) train_model_score = r2_score(y_train, y_train_pred) test_model_score = r2_score(y_test,y_test_pred) report[list(models.keys())[i]] = test_model_score return report except Exception as e: raise ConnectionAbortedError(e,sys) def load_object(file_path): try: with open(file_path,'rb') as file_obj: return pickle.load(file_obj) except Exception as e: raise CustomException(e, sys)