File size: 8,105 Bytes
910e2ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "import cv2\n",
    "import torch\n",
    "import numpy as np\n",
    "import PIL\n",
    "from PIL import Image\n",
    "from einops import rearrange\n",
    "from video_vae import CausalVideoVAELossWrapper\n",
    "from torchvision import transforms as pth_transforms\n",
    "from torchvision.transforms.functional import InterpolationMode\n",
    "from IPython.display import Image as ipython_image\n",
    "from diffusers.utils import load_image, export_to_video, export_to_gif\n",
    "from IPython.display import HTML"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model_path = \"pyramid-flow-miniflux/causal_video_vae\"   # The video-vae checkpoint dir\n",
    "model_dtype = 'bf16'\n",
    "\n",
    "device_id = 3\n",
    "torch.cuda.set_device(device_id)\n",
    "\n",
    "model = CausalVideoVAELossWrapper(\n",
    "    model_path,\n",
    "    model_dtype,\n",
    "    interpolate=False, \n",
    "    add_discriminator=False,\n",
    ")\n",
    "model = model.to(\"cuda\")\n",
    "\n",
    "if model_dtype == \"bf16\":\n",
    "    torch_dtype = torch.bfloat16 \n",
    "elif model_dtype == \"fp16\":\n",
    "    torch_dtype = torch.float16\n",
    "else:\n",
    "    torch_dtype = torch.float32\n",
    "\n",
    "def image_transform(images, resize_width, resize_height):\n",
    "    transform_list = pth_transforms.Compose([\n",
    "        pth_transforms.Resize((resize_height, resize_width), InterpolationMode.BICUBIC, antialias=True),\n",
    "        pth_transforms.ToTensor(),\n",
    "        pth_transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n",
    "    ])\n",
    "    return torch.stack([transform_list(image) for image in images])\n",
    "\n",
    "\n",
    "def get_transform(width, height, new_width=None, new_height=None, resize=False,):\n",
    "    transform_list = []\n",
    "\n",
    "    if resize:\n",
    "        if new_width is None:\n",
    "            new_width = width // 8 * 8\n",
    "        if new_height is None:\n",
    "            new_height = height // 8 * 8\n",
    "        transform_list.append(pth_transforms.Resize((new_height, new_width), InterpolationMode.BICUBIC, antialias=True))\n",
    "    \n",
    "    transform_list.extend([\n",
    "        pth_transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),\n",
    "    ])\n",
    "    transform_list = pth_transforms.Compose(transform_list)\n",
    "\n",
    "    return transform_list\n",
    "\n",
    "\n",
    "def load_video_and_transform(video_path, frame_number, new_width=None, new_height=None, max_frames=600, sample_fps=24, resize=False):\n",
    "    try:\n",
    "        video_capture = cv2.VideoCapture(video_path)\n",
    "        fps = video_capture.get(cv2.CAP_PROP_FPS)\n",
    "        frames = []\n",
    "        pil_frames = []\n",
    "        while True:\n",
    "            flag, frame = video_capture.read()\n",
    "            if not flag:\n",
    "                break\n",
    "    \n",
    "            pil_frames.append(np.ascontiguousarray(frame[:, :, ::-1]))\n",
    "            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
    "            frame = torch.from_numpy(frame)\n",
    "            frame = frame.permute(2, 0, 1)\n",
    "            frames.append(frame)\n",
    "            if len(frames) >= max_frames:\n",
    "                break\n",
    "\n",
    "        video_capture.release()\n",
    "        interval = max(int(fps / sample_fps), 1)\n",
    "        pil_frames = pil_frames[::interval][:frame_number]\n",
    "        frames = frames[::interval][:frame_number]\n",
    "        frames = torch.stack(frames).float() / 255\n",
    "        width = frames.shape[-1]\n",
    "        height = frames.shape[-2]\n",
    "        video_transform = get_transform(width, height, new_width, new_height, resize=resize)\n",
    "        frames = video_transform(frames)\n",
    "        pil_frames = [Image.fromarray(frame).convert(\"RGB\") for frame in pil_frames]\n",
    "\n",
    "        if resize:\n",
    "            if new_width is None:\n",
    "                new_width = width // 32 * 32\n",
    "            if new_height is None:\n",
    "                new_height = height // 32 * 32\n",
    "            pil_frames = [frame.resize((new_width or width, new_height or height), PIL.Image.BICUBIC) for frame in pil_frames]\n",
    "        return frames, pil_frames\n",
    "    except Exception:\n",
    "        return None\n",
    "\n",
    "\n",
    "def show_video(ori_path, rec_path, width=\"100%\"):\n",
    "    html = ''\n",
    "    if ori_path is not None:\n",
    "        html += f\"\"\"<video controls=\"\" name=\"media\" data-fullscreen-container=\"true\" width=\"{width}\">\n",
    "        <source src=\"{ori_path}\" type=\"video/mp4\">\n",
    "        </video>\n",
    "        \"\"\"\n",
    "    \n",
    "    html += f\"\"\"<video controls=\"\" name=\"media\" data-fullscreen-container=\"true\" width=\"{width}\">\n",
    "    <source src=\"{rec_path}\" type=\"video/mp4\">\n",
    "    </video>\n",
    "    \"\"\"\n",
    "    return HTML(html)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Image Reconstruction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image_path = 'image_path'\n",
    "\n",
    "image = Image.open(image_path).convert(\"RGB\")\n",
    "resize_width = image.width // 8 * 8\n",
    "resize_height = image.height // 8 * 8\n",
    "input_image_tensor = image_transform([image], resize_width, resize_height)\n",
    "input_image_tensor = input_image_tensor.permute(1, 0, 2, 3).unsqueeze(0)\n",
    "\n",
    "with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):\n",
    "    latent = model.encode_latent(input_image_tensor.to(\"cuda\"), sample=True)\n",
    "    rec_images = model.decode_latent(latent)\n",
    "\n",
    "display(image)\n",
    "display(rec_images[0])"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Video Reconstruction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "video_path = 'video_path'\n",
    "\n",
    "frame_number = 57   # x*8 + 1\n",
    "width = 640\n",
    "height = 384\n",
    "\n",
    "video_frames_tensor, pil_video_frames = load_video_and_transform(video_path, frame_number, new_width=width, new_height=height, resize=True)\n",
    "video_frames_tensor = video_frames_tensor.permute(1, 0, 2, 3).unsqueeze(0)\n",
    "print(video_frames_tensor.shape)\n",
    "\n",
    "with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):\n",
    "    latent = model.encode_latent(video_frames_tensor.to(\"cuda\"), sample=False, window_size=8, temporal_chunk=True)\n",
    "    rec_frames = model.decode_latent(latent.float(), window_size=2, temporal_chunk=True)\n",
    "\n",
    "export_to_video(pil_video_frames, './ori_video.mp4', fps=24)\n",
    "export_to_video(rec_frames, \"./rec_video.mp4\", fps=24)\n",
    "show_video('./ori_video.mp4', \"./rec_video.mp4\", \"60%\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}