Spaces:
Build error
Build error
File size: 14,472 Bytes
910e2ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import os
import json
import jsonlines
import torch
import math
import random
import cv2
from tqdm import tqdm
from collections import OrderedDict
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import numpy as np
import subprocess
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from torchvision.transforms import functional as F
class ImageTextDataset(Dataset):
"""
Usage:
The dataset class for image-text pairs, used for image generation training
It supports multi-aspect ratio training
params:
anno_file: The annotation file list
add_normalize: whether to normalize the input image pixel to [-1, 1], default: True
ratios: The aspect ratios during training, format: width / height
sizes: The resoultion of training images, format: (width, height)
"""
def __init__(
self, anno_file, add_normalize=True,
ratios=[1/1, 3/5, 5/3],
sizes=[(1024, 1024), (768, 1280), (1280, 768)],
crop_mode='random', p_random_ratio=0.0,
):
# Ratios and Sizes : (w h)
super().__init__()
self.image_annos = []
if not isinstance(anno_file, list):
anno_file = [anno_file]
for anno_file_ in anno_file:
print(f"Load image annotation files from {anno_file_}")
with jsonlines.open(anno_file_, 'r') as reader:
for item in reader:
self.image_annos.append(item)
print(f"Totally Remained {len(self.image_annos)} images")
transform_list = [
transforms.ToTensor(),
]
if add_normalize:
transform_list.append(transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
self.transform = transforms.Compose(transform_list)
print(f"Transform List is {transform_list}")
assert crop_mode in ['center', 'random']
self.crop_mode = crop_mode
self.ratios = ratios
self.sizes = sizes
self.p_random_ratio = p_random_ratio
def get_closest_size(self, x):
if self.p_random_ratio > 0 and np.random.rand() < self.p_random_ratio:
best_size_idx = np.random.randint(len(self.ratios))
else:
w, h = x.width, x.height
best_size_idx = np.argmin([abs(w/h-r) for r in self.ratios])
return self.sizes[best_size_idx]
def get_resize_size(self, orig_size, tgt_size):
if (tgt_size[1]/tgt_size[0] - 1) * (orig_size[1]/orig_size[0] - 1) >= 0:
alt_min = int(math.ceil(max(tgt_size)*min(orig_size)/max(orig_size)))
resize_size = max(alt_min, min(tgt_size))
else:
alt_max = int(math.ceil(min(tgt_size)*max(orig_size)/min(orig_size)))
resize_size = max(alt_max, max(tgt_size))
return resize_size
def __len__(self):
return len(self.image_annos)
def __getitem__(self, index):
image_anno = self.image_annos[index]
try:
img = Image.open(image_anno['image']).convert("RGB")
text = image_anno['text']
assert isinstance(text, str), "Text should be str"
size = self.get_closest_size(img)
resize_size = self.get_resize_size((img.width, img.height), size)
img = transforms.functional.resize(img, resize_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True)
if self.crop_mode == 'center':
img = transforms.functional.center_crop(img, (size[1], size[0]))
elif self.crop_mode == 'random':
img = transforms.RandomCrop((size[1], size[0]))(img)
else:
img = transforms.functional.center_crop(img, (size[1], size[0]))
image_tensor = self.transform(img)
return {
"video": image_tensor, # using keyname `video`, to be compatible with video
"text" : text,
"identifier": 'image',
}
except Exception as e:
print(f'Load Image Error with {e}')
return self.__getitem__(random.randint(0, self.__len__() - 1))
class LengthGroupedVideoTextDataset(Dataset):
"""
Usage:
The dataset class for video-text pairs, used for video generation training
It groups the video with the same frames together
Now only supporting fixed resolution during training
params:
anno_file: The annotation file list
max_frames: The maximum temporal lengths (This is the vae latent temporal length) 16 => (16 - 1) * 8 + 1 = 121 frames
load_vae_latent: Loading the pre-extracted vae latents during training, we recommend to extract the latents in advance
to reduce the time cost per batch
load_text_fea: Loading the pre-extracted text features during training, we recommend to extract the prompt textual features
in advance, since the T5 encoder will cost many GPU memories
"""
def __init__(self, anno_file, max_frames=16, resolution='384p', load_vae_latent=True, load_text_fea=True):
super().__init__()
self.video_annos = []
self.max_frames = max_frames
self.load_vae_latent = load_vae_latent
self.load_text_fea = load_text_fea
self.resolution = resolution
assert load_vae_latent, "Now only support loading vae latents, we will support to directly load video frames in the future"
if not isinstance(anno_file, list):
anno_file = [anno_file]
for anno_file_ in anno_file:
with jsonlines.open(anno_file_, 'r') as reader:
for item in tqdm(reader):
self.video_annos.append(item)
print(f"Totally Remained {len(self.video_annos)} videos")
def __len__(self):
return len(self.video_annos)
def __getitem__(self, index):
try:
video_anno = self.video_annos[index]
text = video_anno['text']
latent_path = video_anno['latent']
latent = torch.load(latent_path, map_location='cpu') # loading the pre-extracted video latents
# TODO: remove the hard code latent shape checking
if self.resolution == '384p':
assert latent.shape[-1] == 640 // 8
assert latent.shape[-2] == 384 // 8
else:
assert self.resolution == '768p'
assert latent.shape[-1] == 1280 // 8
assert latent.shape[-2] == 768 // 8
cur_temp = latent.shape[2]
cur_temp = min(cur_temp, self.max_frames)
video_latent = latent[:,:,:cur_temp].float()
assert video_latent.shape[1] == 16
if self.load_text_fea:
text_fea_path = video_anno['text_fea']
text_fea = torch.load(text_fea_path, map_location='cpu')
return {
'video': video_latent,
'prompt_embed': text_fea['prompt_embed'],
'prompt_attention_mask': text_fea['prompt_attention_mask'],
'pooled_prompt_embed': text_fea['pooled_prompt_embed'],
"identifier": 'video',
}
else:
return {
'video': video_latent,
'text': text,
"identifier": 'video',
}
except Exception as e:
print(f'Load Video Error with {e}')
return self.__getitem__(random.randint(0, self.__len__() - 1))
class VideoFrameProcessor:
# load a video and transform
def __init__(self, resolution=256, num_frames=24, add_normalize=True, sample_fps=24):
image_size = resolution
transform_list = [
transforms.Resize(image_size, interpolation=InterpolationMode.BICUBIC, antialias=True),
transforms.CenterCrop(image_size),
]
if add_normalize:
transform_list.append(transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
print(f"Transform List is {transform_list}")
self.num_frames = num_frames
self.transform = transforms.Compose(transform_list)
self.sample_fps = sample_fps
def __call__(self, video_path):
try:
video_capture = cv2.VideoCapture(video_path)
fps = video_capture.get(cv2.CAP_PROP_FPS)
frames = []
while True:
flag, frame = video_capture.read()
if not flag:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = torch.from_numpy(frame)
frame = frame.permute(2, 0, 1)
frames.append(frame)
video_capture.release()
sample_fps = self.sample_fps
interval = max(int(fps / sample_fps), 1)
frames = frames[::interval]
if len(frames) < self.num_frames:
num_frame_to_pack = self.num_frames - len(frames)
recurrent_num = num_frame_to_pack // len(frames)
frames = frames + recurrent_num * frames + frames[:(num_frame_to_pack % len(frames))]
assert len(frames) >= self.num_frames, f'{len(frames)}'
start_indexs = list(range(0, max(0, len(frames) - self.num_frames + 1)))
start_index = random.choice(start_indexs)
filtered_frames = frames[start_index : start_index+self.num_frames]
assert len(filtered_frames) == self.num_frames, f"The sampled frames should equals to {self.num_frames}"
filtered_frames = torch.stack(filtered_frames).float() / 255
filtered_frames = self.transform(filtered_frames)
filtered_frames = filtered_frames.permute(1, 0, 2, 3)
return filtered_frames, None
except Exception as e:
print(f"Load video: {video_path} Error, Exception {e}")
return None, None
class VideoDataset(Dataset):
def __init__(self, anno_file, resolution=256, max_frames=6, add_normalize=True):
super().__init__()
self.video_annos = []
self.max_frames = max_frames
if not isinstance(anno_file, list):
anno_file = [anno_file]
print(f"The training video clip frame number is {max_frames} ")
for anno_file_ in anno_file:
print(f"Load annotation file from {anno_file_}")
with jsonlines.open(anno_file_, 'r') as reader:
for item in tqdm(reader):
self.video_annos.append(item)
print(f"Totally Remained {len(self.video_annos)} videos")
self.video_processor = VideoFrameProcessor(resolution, max_frames, add_normalize)
def __len__(self):
return len(self.video_annos)
def __getitem__(self, index):
video_anno = self.video_annos[index]
video_path = video_anno['video']
try:
video_tensors, video_frames = self.video_processor(video_path)
assert video_tensors.shape[1] == self.max_frames
return {
"video": video_tensors,
"identifier": 'video',
}
except Exception as e:
print('Loading Video Error with {e}')
return self.__getitem__(random.randint(0, self.__len__() - 1))
class ImageDataset(Dataset):
def __init__(self, anno_file, resolution=256, max_frames=8, add_normalize=True):
super().__init__()
self.image_annos = []
self.max_frames = max_frames
image_paths = []
if not isinstance(anno_file, list):
anno_file = [anno_file]
for anno_file_ in anno_file:
print(f"Load annotation file from {anno_file_}")
with jsonlines.open(anno_file_, 'r') as reader:
for item in tqdm(reader):
image_paths.append(item['image'])
print(f"Totally Remained {len(image_paths)} images")
# pack multiple frames
for idx in range(0, len(image_paths), self.max_frames):
image_path_shard = image_paths[idx : idx + self.max_frames]
if len(image_path_shard) < self.max_frames:
image_path_shard = image_path_shard + image_paths[:self.max_frames - len(image_path_shard)]
assert len(image_path_shard) == self.max_frames
self.image_annos.append(image_path_shard)
image_size = resolution
transform_list = [
transforms.Resize(image_size, interpolation=InterpolationMode.BICUBIC, antialias=True),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
]
if add_normalize:
transform_list.append(transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
print(f"Transform List is {transform_list}")
self.transform = transforms.Compose(transform_list)
def __len__(self):
return len(self.image_annos)
def __getitem__(self, index):
image_paths = self.image_annos[index]
try:
packed_pil_frames = [Image.open(image_path).convert("RGB") for image_path in image_paths]
filtered_frames = [self.transform(frame) for frame in packed_pil_frames]
filtered_frames = torch.stack(filtered_frames) # [t, c, h, w]
filtered_frames = filtered_frames.permute(1, 0, 2, 3) # [c, t, h, w]
return {
"video": filtered_frames,
"identifier": 'image',
}
except Exception as e:
print(f'Load Images Error with {e}')
return self.__getitem__(random.randint(0, self.__len__() - 1)) |