Spaces:
Build error
Build error
File size: 8,637 Bytes
910e2ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
import sys
sys.path.append(os.path.abspath('.'))
import argparse
import datetime
import numpy as np
import time
import torch
import io
import json
import jsonlines
import cv2
import math
import random
from pathlib import Path
from tqdm import tqdm
from concurrent import futures
from torch.utils.data import Dataset, DataLoader, DistributedSampler
from collections import OrderedDict
from torchvision import transforms as pth_transforms
from torchvision.transforms.functional import InterpolationMode
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from trainer_misc import init_distributed_mode
from video_vae import CausalVideoVAELossWrapper
def get_transform(width, height, new_width=None, new_height=None, resize=False,):
transform_list = []
if resize:
# rescale according to the largest ratio
scale = max(new_width / width, new_height / height)
resized_width = round(width * scale)
resized_height = round(height * scale)
transform_list.append(pth_transforms.Resize((resized_height, resized_width), InterpolationMode.BICUBIC, antialias=True))
transform_list.append(pth_transforms.CenterCrop((new_height, new_width)))
transform_list.extend([
pth_transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
transform_list = pth_transforms.Compose(transform_list)
return transform_list
def load_video_and_transform(video_path, frame_indexs, frame_number, new_width=None, new_height=None, resize=False):
video_capture = None
frame_indexs_set = set(frame_indexs)
try:
video_capture = cv2.VideoCapture(video_path)
frames = []
frame_index = 0
while True:
flag, frame = video_capture.read()
if not flag:
break
if frame_index > frame_indexs[-1]:
break
if frame_index in frame_indexs_set:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = torch.from_numpy(frame)
frame = frame.permute(2, 0, 1)
frames.append(frame)
frame_index += 1
video_capture.release()
if len(frames) == 0:
print(f"Empty video {video_path}")
return None
frames = frames[:frame_number]
duration = ((len(frames) - 1) // 8) * 8 + 1 # make sure the frames match: f * 8 + 1
frames = frames[:duration]
frames = torch.stack(frames).float() / 255
video_transform = get_transform(frames.shape[-1], frames.shape[-2], new_width, new_height, resize=resize)
frames = video_transform(frames).permute(1, 0, 2, 3)
return frames
except Exception as e:
print(f"Loading video: {video_path} exception {e}")
if video_capture is not None:
video_capture.release()
return None
class VideoDataset(Dataset):
def __init__(self, anno_file, width, height, num_frames):
super().__init__()
self.annotation = []
self.width = width
self.height = height
self.num_frames = num_frames
with jsonlines.open(anno_file, 'r') as reader:
for item in tqdm(reader):
self.annotation.append(item)
tot_len = len(self.annotation)
print(f"Totally {len(self.annotation)} videos")
def process_one_video(self, video_item):
videos_per_task = []
video_path = video_item['video']
output_latent_path = video_item['latent']
# The sampled frame indexs of a video, if not specified, load frames: [0, num_frames)
frame_indexs = video_item['frames'] if 'frames' in video_item else list(range(self.num_frames))
try:
video_frames_tensors = load_video_and_transform(
video_path,
frame_indexs,
frame_number=self.num_frames, # The num_frames to encode
new_width=self.width,
new_height=self.height,
resize=True
)
if video_frames_tensors is None:
return videos_per_task
video_frames_tensors = video_frames_tensors.unsqueeze(0)
videos_per_task.append({'video': video_path, 'input': video_frames_tensors, 'output': output_latent_path})
except Exception as e:
print(f"Load video tensor ERROR: {e}")
return videos_per_task
def __getitem__(self, index):
try:
video_item = self.annotation[index]
videos_per_task = self.process_one_video(video_item)
except Exception as e:
print(f'Error with {e}')
videos_per_task = []
return videos_per_task
def __len__(self):
return len(self.annotation)
def get_args():
parser = argparse.ArgumentParser('Pytorch Multi-process Training script', add_help=False)
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--model_path', default='', type=str, help='The pre-trained weight path')
parser.add_argument('--model_dtype', default='bf16', type=str, help="The Model Dtype: bf16 or df16")
parser.add_argument('--anno_file', type=str, default='', help="The video annotation file")
parser.add_argument('--width', type=int, default=640, help="The video width")
parser.add_argument('--height', type=int, default=384, help="The video height")
parser.add_argument('--num_frames', type=int, default=121, help="The frame number to encode")
parser.add_argument('--save_memory', action='store_true', help="Open the VAE tiling")
return parser.parse_args()
def build_model(args):
model_path = args.model_path
model_dtype = args.model_dtype
model = CausalVideoVAELossWrapper(model_path, model_dtype=model_dtype, interpolate=False, add_discriminator=False)
model = model.eval()
return model
def build_data_loader(args):
def collate_fn(batch):
return_batch = {'input' : [], 'output': []}
for videos_ in batch:
for video_input in videos_:
return_batch['input'].append(video_input['input'])
return_batch['output'].append(video_input['output'])
return return_batch
dataset = VideoDataset(args.anno_file, args.width, args.height, args.num_frames)
sampler = DistributedSampler(dataset, num_replicas=args.world_size, rank=args.rank, shuffle=False)
loader = DataLoader(
dataset, batch_size=args.batch_size, num_workers=6, pin_memory=True,
sampler=sampler, shuffle=False, collate_fn=collate_fn, drop_last=False, prefetch_factor=2,
)
return loader
def save_tensor(tensor, output_path):
try:
torch.save(tensor.clone(), output_path)
except Exception as e:
pass
def main():
args = get_args()
init_distributed_mode(args)
device = torch.device('cuda')
rank = args.rank
model = build_model(args)
model.to(device)
if args.model_dtype == "bf16":
torch_dtype = torch.bfloat16
elif args.model_dtype == "fp16":
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
data_loader = build_data_loader(args)
torch.distributed.barrier()
window_size = 16
temporal_chunk = True
task_queue = []
if args.save_memory:
# Open the tiling, to reduce gpu memory cost
model.vae.enable_tiling()
with futures.ThreadPoolExecutor(max_workers=16) as executor:
for sample in tqdm(data_loader):
input_video_list = sample['input']
output_path_list = sample['output']
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
for video_input, output_path in zip(input_video_list, output_path_list):
video_latent = model.encode_latent(video_input.to(device), sample=True, window_size=window_size, temporal_chunk=temporal_chunk, tile_sample_min_size=256)
video_latent = video_latent.to(torch_dtype).cpu()
task_queue.append(executor.submit(save_tensor, video_latent, output_path))
for future in futures.as_completed(task_queue):
res = future.result()
torch.distributed.barrier()
if __name__ == "__main__":
main() |